Biotechnology Techniques

, Volume 2, Issue 2, pp 133–136 | Cite as

Occlusion immobilization of hybridoma cells in chitosan

  • E. Wang
  • S. E. Overgaard
  • J. M. Scharer
  • N. C. Bols
  • M. Moo-Young


The use of chitosan fibers as a matrix for immobilizing hybridoma cells was investigated. Optimal cell entrapment within fibrous chitosan occurred at pH values below 7.2. Chitosan fibers were found to be more effective than chitosan beads in the occlusion of the hybridoma cells. Maximum total cell concentrations of 5 to 5.8 × 106 cells/mL were obtained in the chitosan fractions of cultures containing 25% to 50% chitosan volume fractions. The viability of the cells was found to be unaffected by the presence of chitosan in culture.


Chitosan Immobilization Total Cell Cell Concentration Optimal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buehler, R.J. (1984). Production of monoclonal antibody from gel entrapped hybridoma cells.Karyon Technology News, 1, p 3.Google Scholar
  2. 2.
    Dean, Jr., R.C., Karkare, S.B., Phillips, P.G., Ray, N.G., Runstadler, Jr., P.W. (1986). Continuous cell culture with fluidized sponge beads for large-scale production of medical proteins.Verax Corporation report, NH, U.S.A.Google Scholar
  3. 3.
    Duff, R.G. (1985). Microencapsulation technology: a novel method for monoclonal antibody production.Trends in Biotechnology, 3, pp 167–170.Google Scholar
  4. 4.
    Karel, S.F., Libicki, S.B., and Robertson, S.R. (1985). The Immobilization of Whole Cells: Engineering Principles,Chemical Engineering Science, 40, pp 1321–1354.Google Scholar
  5. 5.
    Knorr, D. (1984). University of Delaware, Newark (as cited by Vorlop, K.D. and Klein, J. (1987). Entrapment of microbial cells in chitosan.Methods in Enzymology, 135, pp 259–268).Google Scholar
  6. 6.
    Nilsson, K., Mosbach, K. (1980). Preparation of immobilized animal cells.FEBS Letters, 118, pp 145–150.Google Scholar
  7. 7.
    Nilsson, K., Scheirer, W., Merten, O.W., Ostberg, L., Liehl, E., Katinger, H.W.D., Mosbach, K. (1983). Entrapment of animal cells for production of monoclonal antibodies and other biomolecules.Nature, 302, pp 629–630.Google Scholar
  8. 8.
    Pangburn, S.H., Trescony, P.V., Heller, J. (1984). Partially deacetylated chitin: its use in self-regulated drug delivery systems. In:Chitin, Chitosan and Related Enzymes, Zikakis, J. P. ed, pp 3–19, London: Academic Press.Google Scholar
  9. 9.
    Phillips, H.A., Scharer, J.M., Bols, N.C., Moo-Young, M. (1987). Effect of Oxygen on Antibody Production in Hybridoma Culture.Biotechnology Letters, 9, pp 745–750.Google Scholar
  10. 10.
    Posillico, E.G. (1986). Microencapsultation technology for largescale antibody production.Biotechnology, 4, pp 114–117.Google Scholar
  11. 11.
    Scheirer, W., Nilsson, K., Merten, O.W., Katinger, H.W.D. and Mosbach, K. (1984). Entrapment of animal cells for the production of biomolecules such as monoclonal antibodies.Develop. Biol. Standard, 55, pp 155–161.Google Scholar
  12. 12.
    Vorlop, K.D. and Klein, J. (1981). Formation of spherical chitosan biocatalysts by ionotropic gelation.Biotechnology Letters, 3, pp 9–14.Google Scholar
  13. 13.
    Vorlop, K.D. and Klein, J. (1987). Entrapment of microbial cells in chitosan.Methods in Enzymology, 135, pp 259–268.Google Scholar

Copyright information

© Science & Technology Letters 1988

Authors and Affiliations

  • E. Wang
    • 1
  • S. E. Overgaard
    • 1
  • J. M. Scharer
    • 1
  • N. C. Bols
    • 1
  • M. Moo-Young
    • 1
  1. 1.Industrial Biotechnology CentreUniversity of WaterlooWaterlooCanada

Personalised recommendations