Acta Mathematica Hungarica

, Volume 66, Issue 4, pp 289–300 | Cite as

Baire 1 functions which are not countable unions of continuous functions

  • J. Van Mill
  • R. Pol


Continuous Function Countable Union 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. I. Adjan and P. S. Novikov, On a semicontinuous function,Moskov. Gos. Ped. Inst. Uchen. Zap.,138 (1958), 3–10, in Russian.Google Scholar
  2. [2]
    A. L. Brown and A. Page,Elements of Functional Analysis, Van Nostrand Reinhold (London, 1970).Google Scholar
  3. [3]
    A. M. Bruckner,Differentiation of Real Functions, Lecture Notes in Mathematics, vol. 659, Springer-Verlag, (Berlin etc., 1978).Google Scholar
  4. [4]
    R. Engelking,General Topology, Heldermann Verlag (Berlin, 1989).Google Scholar
  5. [5]
    S. Jackson and R. D. Mauldin, Some complexity results in topology and analysis,Fund. Math.,141 (1992), 75–83.Google Scholar
  6. [6]
    L. Keldyš, Sur les fonctions premières measurables B,Soviet Math. Doklady,4 (1934), 192–197.Google Scholar
  7. [7]
    K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors,Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys.,13 (1965), 397–403.Google Scholar
  8. [8]
    E. A. Michael, Selected selection theorems,Amer. Math. Monthly,63 (1965), 233–238.Google Scholar
  9. [9]
    J. van Mill,Infinite-dimensional Topology: Prerequisites and Introduction, North-Holland Publishing Company (Amsterdam, 1989).Google Scholar
  10. [10]
    W. Sierpiński, Sur un problème concernant les fonctions semi-continues,Fund. Math.,28 (1937), 1–6.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • J. Van Mill
    • 1
  • R. Pol
    • 2
  1. 1.Department of MathematicsVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of MathematicsWarsaw UniversityWarsaw 59Poland

Personalised recommendations