Periodica Mathematica Hungarica

, Volume 26, Issue 1, pp 55–64 | Cite as

On Volterra-Fredholm integral equations

  • A. S. S. Zaghrout


The existence and uniqueness of solutions of more general Volterra-Fredholm integral equations are investigated. The successive approximations method based on the general idea of T. Wazewski is the main tool.

Mathematics subject classification numbers, 1991

Primary 45B05 45D05 45910 45L05 

Key words and phrases

Volterra-Fredholm integral equations existence and uniquencess of solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Asirov andJ. D. Mamedov, Investigation of solutions of nonlinear Volterra-Fredholm operator equations,Dakl. Akad. Nauk. SSSR,229 (1976), 982–986.Google Scholar
  2. [2]
    I. Bihari, Notes on a nonlinear integral equation,Studia Sci. Math. Hungar. 2 (1967), 1–6.Google Scholar
  3. [3]
    S. I. Grossman, Existence and stability of a class of nonlinear Volterra integral equations,Trans. Amer. Soc. 150 (1970), 541–556.Google Scholar
  4. [4]
    J. Mamedov andV. Musaev, On the theory of solutions of nonlinear operator equations,Dokl. Akad. Nauk. SSSR 195 (1970), 1420–1423.Google Scholar
  5. [5]
    R. Miller,Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Pask, California, (1971).Google Scholar
  6. [6]
    T. Wazewski, Sur une procede de prouver la convergence des approximations successive sans utelisation des series de comparison,Bull. Acad. Palon. Sci. Ser. Sci. Math. Astr. et phys. 8 (1960), 45–52.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • A. S. S. Zaghrout
    • 1
  1. 1.Mathematics Department Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations