Advertisement

Periodica Mathematica Hungarica

, Volume 26, Issue 1, pp 15–30 | Cite as

On the product of affine manifolds and the generalized de Rham splitting theorem

  • E. I. Major
Article
  • 16 Downloads

Mathematics subject classification numbers, 1991

Primary 53B05 

Key words and phrases

Decomposition of affine manifolds holonomy groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Hicks, A theorem on affine connections,Illinois J. Math. 3 (1959), 242–254.Google Scholar
  2. [2]
    S. Kashiwabara, On the reducibility of an affinely connected manifold,Tohoku Math. J. (2)8 (1956), 13–28.Google Scholar
  3. [3]
    S. Kobayashi andK. Nomizu,Foundations of Differential Geometry, Vol. I. and II, Interscience, New York, 1963 and 1969.Google Scholar
  4. [4]
    R. Maltz, The deRham product decomposition,J. Diff. Geom. 7 (1972), 161–174.Google Scholar
  5. [5]
    G. DeRham, Sur la reducibilite d'un espace deRham,Comment. Math. Helv. 26 (1952), 328–344.Google Scholar
  6. [6]
    H. Wu, On the deRham decomposition theorem,Illinois Journal of Mathematics,8 (1964), 291–311.Google Scholar
  7. [7]
    H. Wu, Decomposition of Riemannian manifolds,Bull. Amer. Math. Soc. 70 (1964), 610–617.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • E. I. Major
    • 1
    • 2
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Dept. of MathThe Ohio State UnivColumbusUSA

Personalised recommendations