Periodica Mathematica Hungarica

, Volume 26, Issue 1, pp 7–14 | Cite as

Cyclic actions on some Klein bottle bundles over S1

  • M. A. Natsheh


Leth be a cyclic action of periodn onM, whereM is eitherS1×K, K is the Klein bottle or on\(S^1 \tilde xK\), the twisted Klein bottle bundle overS1, such that there is a fiberingq:MS1 with fiber a Klein bottleK or a torusT with respect to which the action is fiber preserving. We classify all such actions and show that they might be distinguished by their fixed points or by their orbit spaces.

Mathematics subject classification numbers, 1991

Primary 57S25 Secondary 57M12 55R10 

Key words and phrases

Cyclic action periodic map orbit space Fixed point set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Hempel,3-manifolds, Ann. of Math. Studies, no.86 Princeton University Press, Princeton, N. J., 1976.Google Scholar
  2. [2]
    K. W. Kwun andJ. L. Tollefson, PL involutions ofS 1×S 1×S 1,Trans. Amer. Math. Soc.,203 (1975), 97–106.Google Scholar
  3. [3]
    E. Luft andD. Sjerve,Pacific J. Math. 114 (1984), 191–205.Google Scholar
  4. [4]
    W. H. Meeks III andPeter Scott, Finite group actions on 3-manifolds,Invent. Math.,86 (1986), 278–346.Google Scholar
  5. [5]
    M. A. Natsheh,Z n-actionson some Klein bottle bundles overS 1,Proc. of the First Jordanian Math. Conference, (1991), 31–41.Google Scholar
  6. [6]
    M. A. Natsheh, Involutions on the 3-dimensional nonorientable flat space forms,Ain Shams Univ. Science Bull.,31 (1989).Google Scholar
  7. [7]
    J. H. Przytycki, Actions ofZ non some surface-bundles overS 1,Colloq. Math.,47 (1982), no. 2, 221–239.Google Scholar
  8. [8]
    M. Sakuma, Involutions on torus bundles overS 1,Osaka J. Math. 22 (1985), 163–185.Google Scholar
  9. [9]
    J. L. Tollefson, Involutions onS 1×S 2 and other 3-manifolds,Trans. Amer. Math. Soc.,183 (1973), 139–152.Google Scholar
  10. [10]
    F. Waldhausen, On irreducible 3-manifolds which are sufficiently large,Ann. of. Math. (2)87 (1968), 56–88.Google Scholar
  11. [11]
    K. Yokoyama, Classification of periodic maps on compact surfaces I,Tokyo J. Math.,6 (1983), 75–94.Google Scholar
  12. [12]
    K. Yokoyama, Classification of periodic maps on surfaces II,Tokyo J. Math. 7 (1983), 249–285.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • M. A. Natsheh
    • 1
  1. 1.Department of Mathematics Faculty of ScienceUniversity of JordanAmmanJordan

Personalised recommendations