Hepatocellular adaptation to extreme nutritional conditions in ide,Leuciscus idus melanotus L. (Cyprinidae). A morphofunctional analysis

Abstract

The adaptive response of the omnivorous ide,Leuciscus idus melanotus, to drastic metabolic conditions was analyzed on different levels of organisation investigating a variety of parameters: Organism (condition factor, liver-somatic index), organ (liver structure), cellular and subcellular level (hepatocyte structure, glycogen and lipid storage, contents and distribution of nucleic acids, enzyme alterations).

During starvation, ide were able to maintain liver integrity in a biphasic process: after an initial phase of disturbance, ide established a new structural and metabolic homeostasis. Recovery from starvation was possible only with a complete diet but not with a sucrose diet. Carbohydrate overload, as evoked by sucrose refeeding, did not result in liver or carcass fattening as known from mammals.

To the best of our knowledge, the present study is the first to use enzyme histochemistry in fish nutrition research. In mammals, histochemistry is particularly helpful for understanding processes of hepatic metabolic adaptation. In fish, however, on the basis of our results, enzyme histochemical studies appear to be of limited value, as long as no further data are available on a zonal distribution of enzyme activities in teleost liver parenchyma. Instead, the histochemical detection of the distribution of hepatic storage products and RNA-positive material yielded important information on liver adaptive processes.

This is a preview of subscription content, log in to check access.

Abbreviations

H:

starvation

SU:

sucrose

AD:

artificial diet

AcP:

acid phosphatase

G6Pase:

glucose-6-phosphatase

G6PDH:

glucose-6-phosphate dehydrogenase

GLU:

β-glucuronidase

ME:

malic enzyme

PHO:

glycogen phosphorylase

UE:

unspecific esterase

RER:

rough endoplasmic reticulum

References cited

  1. Adams, S.M. and McLean, R.B. 1985. Estimation of largemouth bass,Micropterus salmoides Lacépède, growth using the liver-somatic index and physiological variables. J. Fish Biol. 26: 111–126.

    Google Scholar 

  2. Amlacher, E. 1959. Das Verhalten der inneren Organe und der Muskulatur dreisömmriger Karpfen aus dem Teich des Dresdener Zwingers bei extremer Kohlenhydratfütterung. I. Histologische Untersuchungen an Herz, Leber, Bauchspeichel drüse, Milz, Niere und Darm. Z. Fischerei NF 8: 437–446.

    Google Scholar 

  3. Avila, E.M. 1986a. Evaluation of practical diets in the culture of the rabbitfish,Siganus guttatus (Bloch) (Pisces: Siganidae) using liver ultrastructural methods. Zool. Anz. Jena 217: 178–191.

    Google Scholar 

  4. Avila, E.M. 1986b. The ultrastructure of the hepatocytes of the giant seaperch,Lates calcarifer (Bloch) (Pisces: Centropomidae) during starvation and refeeding with different diets. Asian Mar. Biol. 3: 129–137.

    Google Scholar 

  5. Barni, S., Bernocchi, G. and Gerzeli, G. 1985. Morphohistochemical changes in hepatocytes during the life cycle of the European eel. Tiss. Cell 17: 97–109.

    Google Scholar 

  6. Barka, T. and Anderson, P.J. 1962. Histochemical methods for acid phosphatase using hexazonium pararosaniline as coupler. J. Histochem. Cytochem. 10: 741–753.

    Google Scholar 

  7. Bartholomew, G.A. 1964. The roles of physiology and behavior in the maintenance of homeostasis in the desert environment.In Homeostasis and Feedback Mechanisms. Symposia of the Society for Experimental Biology. Vol. 18, pp. 7–21. Academic Press, New York.

    Google Scholar 

  8. Braunbeck, T., Gorgas, K., Storch, V. and Völkl, A. 1987. Ultrastructure of hepatocytes in golden ide (Leuciscus idus melanotus L.; Cyprinidae: Teleostei) during thermal adaptation. Anat. Embryol. 175: 303–313.

    Google Scholar 

  9. Benner, U., Hacker, H.J. and Bannasch, P. 1979. Electron microscopical demonstration of glucose-6-phosphatase in native cryostat sections fixed with glutaraldehyde through semipermeable membranes. Histochemistry 65: 41–47.

    Google Scholar 

  10. Buckley, L.J., Turner, S.I., Halavick, T.A., Smigielski, A.S., Drews, S.M., and Laurence, G.C. 1984. Effects of temperature and food availability on growth, survival and RNA-DNA ratio of larval sand lance (Ammodytes americanus). Mar. Ecol. Progr. Ser. 15: 91–97.

    Google Scholar 

  11. Bulow, F.J. 1970. RNA:DNA ratios as indicators of recent growth rates of a fish. J. Fish. Res. Bd. Can. 27: 2343–2349.

    Google Scholar 

  12. Chavin, W. 1973. Teleostean endocrine and para-endocrine alterations of utility in environmental studies.In Responses of Fish to Environmental Changes. pp. 199–238. Edited by W. Chavin. Springfield, Illinois.

  13. Cowey, C.B., Adron, J.W., Brown, D.A. and Shanks, A.M. 1975. The metabolism of glucose by plaice and the effect of dietary energy source on protein utilization in plaice. Br. J. Nutr. 33: 219–231.

    Google Scholar 

  14. Créach, Y. and Murat, J.C. 1974. La jeune et la réalimentation chez la carpe (Cyprinus carpio L.): VII. Métabolisme du glucose-I-14C et du glucose-6-14C. Arch. Sci. Physiol. 28: 157–172.

    Google Scholar 

  15. Drake, R.L., Thompson, E.W. and Parks, W.C. 1983. Abnormal hepatic lipid accumulation following treatment of diabetic rats with insulin and a high-carbohydrate, fat-free diet. Am. J. Anat. 196: 75–81.

    Google Scholar 

  16. Gas, N. 1973. Cytophysiologie du foie de carpe (Cyprinus carpio L.). II. Modalités d'altération des ultrastructures au cours d'un jeune expérimental prolongé. J. Physiol. Paris 66: 282–303.

    Google Scholar 

  17. Hacker, H.J. 1983. Korrelative Histochemie einiger Enzyme des Kohlenhydratstoffwechsels in präneoplastischen und neoplastischen Läsionen der Rattenleber. Dissertation Univ. Heidelberg.

  18. Hampton, J.A., McCuskey, P.A., McCuskey, R.S. and Hinton, D.E. 1985. Functional units in rainbow trout (Salmo gairdneri) liver. I. Arrangement and histochemical properties of hepatocytes. Anat. Rec. 213: 166–175.

    Google Scholar 

  19. Hille, S., Deufel, J., Kausch, H. and Platz, F. 1980. Entstehung eines Fettlebersyndroms bei Regenbogenforellen (Salmo gairdneri) in Abhängigkeit vom Kohlenhydrat- und Proteingehalt des Futters, sowie bei Überfütterung. Arch Hydrobiol. Suppl. 59: 1–16.

    Google Scholar 

  20. Hilton, J.W. and Atkinson, J.L. 1982. Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. Br. J. Nutr. 47: 597–607.

    Google Scholar 

  21. Hinton, D.E., Snipes, R.L. and Kendall, M.W. 1972. Morphology and enzyme histochemistry in the liver of largemouth bass (Micropterus salmoides). J. Fish. Res. Bd. Can. 29: 531–534.

    Google Scholar 

  22. Hinton, D.E., Kendall, M.W. and Silver, B.B. 1973. Use of histologic and histochemical assessments in the prognosis of the effects of aquatic pollutants.In Biological Methods for the Assessment of Water Quality, pp. 194–208. American Society for Testing and Materials ASTM STP 528.

  23. Jungermann, K. and Sasse, D. 1978. Heterogeneity of liver parenchymal cells. Trends Biochem. Sci. 3: 198–202.

    Google Scholar 

  24. Karnovsky, M.J. 1971. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. J. Cell Biol. 51: 284.

    Google Scholar 

  25. Keppler, D. and Decker, K. 1984. Glycogen.In Methods in Enzymatic Analysis. Vol. II. pp. 77–78. Edited by H. U. Bergmeyer. Verlag Chemie, Weinheim.

    Google Scholar 

  26. Langer, M. and Storch, V. 1978. Zur Ultrastruktur der Hepatocyten von Teleosteern bei Nahrungsentzug. Z. mikr.-anat. Forsch. Leipzig. 92: 641–654.

    Google Scholar 

  27. Leatherland, J.F. 1982. Effect of a commercial trout diet on the liver of fed and fasted yearling coho salmon,Oncorhynchus kisutch Walbaum. J. Fish Biol. 21: 311–319.

    Google Scholar 

  28. Lojda, Z., Gossrau, R. and Schiebler, T.H. 1976. Enzymhistochemische Methoden. Springer, Berlin.

    Google Scholar 

  29. McManus, J.F.A. 1948. Histological and histochemical uses of periodic acid. Stain Technol. 23: 99–108.

    Google Scholar 

  30. Moon, T.W. 1983. Metabolic reserves and enzyme activities with food deprivation in immature American eels,Anguilla rostrata (LeSueur). Can. J. Zool. 61: 802–811.

    Google Scholar 

  31. Moon, T.W. and Johnston, I.A. 1980. Starvation and the activities of glycolytic and gluconeogenic enzymes in skeletal muscles and liver of plaice,Pleuronectes platessa. J. Comp. Physiol. 136: 31–38.

    Google Scholar 

  32. Novikoff, A.B. 1959. Cell heterogeneity within the hepatic lobule of the rat. Staining reaction. J. Histochem. Cytochem. 7: 240–244.

    Google Scholar 

  33. Otter, W. den and Minjer, A. de 1972. Glycogen in the liver during starvation: A histochemical and biochemical investigation. Anat. Rec. 173: 141–150.

    Google Scholar 

  34. Pearse, A.G.E. 1968. Histochemistry. Theoretical and Applied. Churchill, London.

    Google Scholar 

  35. Phlippen, R. and Oette, K. 1979. Fettleber.In Klinische Hepatologie, pp. 6.232–6.244. Edited by H. A. Kühn and H. Wernze. G. Thieme, Stuttgart.

    Google Scholar 

  36. Rafael, J. and Vsiansky, P. 1981. Quantitative determination of nucleic acids in brown and white adipose tissue. Anal. Biochem. 115: 158–162.

    Google Scholar 

  37. Rafael, J. and Braunbeck, T. 1987. Interacting effects of diet and environmental temperature on biochemical parameters in the liver ofLeuciscus idus melanotus (Cyprinidae: Teleostei). Fish Physiol. Biochem., in press.

  38. Rappaport, A.M. 1976. The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr. Pathol. 157: 219–243.

    Google Scholar 

  39. Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208–212.

    Google Scholar 

  40. Rieder, H., Teutsch, H.F. and Sasse, D. 1978. NADP-dependent dehydrogenases in rat liver parenchyma. I. Methodological studies on the qualitative histochemistry of G6PDH, malic enlzyme and ICHD. Histochemistry 56: 283–298.

    Google Scholar 

  41. Robinson, J.M. and Karnovsky, M.J. 1983. Ultrastructural localization of several phosphatases with cerium. J. Histochem. Cytochem. 31: 1197–1208.

    Google Scholar 

  42. Roque, A.L., Jafarey, N.A. and Coulter, P. 1965. A stain for the histochemical demonstration of nucleic acids. Exp. Mol. Pathol. 4: 266–274.

    Google Scholar 

  43. Schär, M., Maly, I.P. and Sasse, D. 1985. Histochemical studies on metabolic zonation of the liver in the trout (Salmo gairdneri). Histochemistry 83: 197–151.

    Google Scholar 

  44. Segner, H. and Möller, H. 1984. Electron microscopical investigations on starvation-induced liver pathology in floundersPlatichthys flesus. Mar. Ecol. Progr. Ser. 19: 193–196.

    Google Scholar 

  45. Segner, H., Orejana-Acosta, B. and Juario, J.V. 1984. The dietary value ofBrachionus plicatilis grown on three different species of phytoplankton on the ultrastructure of the hepatocytes ofChanos chanos (Forskal) fry. Aquaculture 42: 109–115.

    Google Scholar 

  46. Segner, H., Rösch, R., Poeppinghausen, K.J. and Schmidt, H. 1987. Assessment of nutritional influences on coregonid larvae using growth, survival and histological monitoring. Proc. Aquaculture Europe 87. Amsterdam, June 2–5, 1987.

  47. Severson, A.R., Hubbard, D.D. and Gibson, D.M. 1973. Changes in distribution of lipid, glucose-6-phosphate dehydrogenase and malate enzyme within the liver lobule of the rat during adaptive hyperlipogenesis. Anat. Rec. 175: 231–242.

    Google Scholar 

  48. Spanhof, L. 1964. Einführung in die Praxis der Histochemie. 2nd edition. VEB Fischer Verlag, Jena.

    Google Scholar 

  49. Stebbing, A.R.D. 1985. A possible synthesis.In The Effects of Stress and Pollution on Marine Animals. pp. 301–314. Edited by B.L. Bayne. Praeger Publishers, New York.

    Google Scholar 

  50. Storch, V. and Juario, J.V. 1983. The effect of starvation and subsequent feeding on the hepatocytes ofChanos chanos (Forskal) fingerlings and fry. J. Fish Biol. 23: 95–103.

    Google Scholar 

  51. Storch, V., Segner, H., Juario, J.V. and Duray, M.N. 1984. Influence of nutrition on the hepatocytes of milkfish,Chanos chanos (Chanidae Teleostei). Zool. Anz. Jena 213: 151–160.

    Google Scholar 

  52. Teutsch, H.F. 1978. Improved method for the histochemical demonstration of glucose-6-phosphatase activity. A methodological study. Histochemistry 57: 107–117.

    Google Scholar 

  53. Teutsch, H.F. 1981. Chemomorphology of liver parenchyma. Progr. Histochem. Cytochem. 14: 1–92.

    Google Scholar 

  54. Teutsch, H.F. 1984. Sex-specific regionality of liver metabolism during starvation; with special reference to the heterogeneity of the lobular periphery. Histochemistry 81: 87–92.

    Google Scholar 

  55. Vernier, J.M. and Sire, M.F. 1976. Evolution of the glycogen content and of glucose-6-phosphatase activity in the liver ofSalmo gairdneri during development. Tiss. Cell 8: 531–546.

    Google Scholar 

  56. Vogt, G. 1987. Monitoring of environmental pollutants such as pesticides in prawn aquaculture by histological diagnosis. Aquaculture (in press).

  57. Walton, M.J. and Cowey, C.B. 1982. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem. Physiol. 73B: 59–79.

    Google Scholar 

  58. Walton, M.J. 1986. Metabolic effects of feeding a high protein/low carbohydrate diet as compared to a low protein/high carbohydrate diet to rainbow troutSalmo gairdneri. Fish Physiol. Biochem. 1: 7–15.

    Google Scholar 

  59. Weibel, E.R. 1969. Stereological Methods. Vol. I. Practical Methods for Biological Morphometry. Academic Press, London.

    Google Scholar 

  60. Welsch, U. and Storch, V. 1973. Enzyme histochemical and ultrastructural observations on the liver of teleost fishes. Arch. Histol. Jap. 36: 21–37.

    Google Scholar 

  61. Yanni, M.Y. 1961. Effect of excess glucose on the carbohydrates, water and fat contents of the tissues ofClarias lazera. Z. vgl. Physiol. 45: 227–232.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Segner, H., Braunbeck, T. Hepatocellular adaptation to extreme nutritional conditions in ide,Leuciscus idus melanotus L. (Cyprinidae). A morphofunctional analysis. Fish Physiol Biochem 5, 79–97 (1988). https://doi.org/10.1007/BF01875645

Download citation

Key words

  • ide
  • liver
  • adaptation
  • starvation
  • diet
  • histology
  • histochemistry
  • biochemistry