Journal of Biomolecular NMR

, Volume 2, Issue 2, pp 149–160 | Cite as

Multidimensional1H and15N NMR investigation of glutamine-binding protein ofEscherichia coli

  • Nico Tjandra
  • Virgil Simplaceanu
  • Patricia F. Cottam
  • Chien Ho
Research Papers


Specific and uniform15N labelings along with site-directed mutagenesis of glutamine-binding protein have been utilized to obtain assignments of the His156, Trp32 and Trp.220 residues. These assignments have been made not only to further study the importance of these 3 amino acid residues in protein-ligand and protein-protein interactions associated with the active transport ofl-glutamine across the cytoplasmic membrane ofEscherichia coli, but also to serve as the starting points in the sequence-specific backbone assignment. The assignment of H2 of His156 refines the earlier, model where this particular proton formas an intermolecular hydrogen bond to the δ-carbonyl ofl-glutamine, while assignments of both Trp32 and Trp220 show the variation in local structures which ensure the specificity in ligand binding and protein-protein interaction. Using 3D NOESY-HMQC NMR, amide connectivities can be traced along 8–9 amino acid residues at a time. This paper illustrates the usefulness of combining15N isotopic labeling and multinuclear, multidimensional NMR techniques for a structural investigation of a protein with a molecular weight of 25 000.


Backbone assignment 3D NMR Heteronuclear NMR NOESY 1H NMR 15N NMR Binding protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, G.F.-L. (1986)Annu. Rev. Biochem.,55, 397–425.Google Scholar
  2. Ames, G.F.-L., Prody, C. and Kutsu, S. (1984)J. Bacteriol.,160, 1181–1183.Google Scholar
  3. Bax, A., Griffey, R.H. and Hawkins, B.L. (1983)J. Magn. Reson.,55, 301–315.Google Scholar
  4. Bendall, M.R., Pegg, D.T. and Dodrell, D.M. (1983)J. Magn. Reson.,52, 81–117.Google Scholar
  5. Bystrov, V.F. (1976)Prog. NMR Spectrosc.,10, 41–81.Google Scholar
  6. Clore, M., Kay, L.E., Bax, A. and Gronenborn., A.M. (1991)Biochemistry,30, 12–18.Google Scholar
  7. Drapeau, G.R., Brammar, W.J. and Yanofsky, C. (1968)J. Mol. Biol.,35, 357–367.Google Scholar
  8. Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T. and Gronenborn, A.M. (1990)Biochemistry,29, 3542–3556.Google Scholar
  9. Gilliland, G.L. and Quiocho, F.A. (1981)J. Mol. Biol.,146, 341–362.Google Scholar
  10. Gronenborn, A.M., Bax, A., Wingfield, P.T. and Clore, G.M. (1989)FEBS Lett.,243, 93–98.Google Scholar
  11. Hunt, A.G. and Hong, J.-S. (1981)J. Biol. Chem.,256, 11988–11991.Google Scholar
  12. Hunt, A.G. and Hong, J.-S. (1983)Biochemistry,22, 851–854.Google Scholar
  13. Ikura, M., Kay, L.E. and Bax, A. (1990)Biochemistry,29, 4659–4667.Google Scholar
  14. Jardetzky, O. and Roberts, G.C.K. (1981)N. M. R. in Molecular Biology, Academic Press, New York.Google Scholar
  15. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990)J. Magn. Reson.,89, 496–514.Google Scholar
  16. Kreishman, G.P., Robertson, D.E. and Ho, C. (1973)Biochem Biophys. Res. Commun. 53, 18–23.Google Scholar
  17. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989a)J. Am. Chem. Soc.,111, 1515–1517.Google Scholar
  18. Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989b)Biochemistry,28, 6150–6156.Google Scholar
  19. Montelione, G.T. and Wagner, G. (1990)J. Magn. Reson.,87, 183–188.Google Scholar
  20. Mueller, L. (1979)J. Am. Chem. Soc.,101, 4481–4484.Google Scholar
  21. Nohno, T., Saito, T. and Hong, J.-S. (1986)Mol. Gen. Genet.,205, 260–269.Google Scholar
  22. Oh, B.H., Westler, W.M., Darba, P. and Markley, J.L. (1988)Science,240, 908–911.Google Scholar
  23. Pflugrath, J.W. and Quiocho, F.A. (1988)J. Mol. Biol.,200, 163–180.Google Scholar
  24. Plateau, P., Dumas, C. and Gueron, M. (1983)J. Magn. Reson.,54, 46–53.Google Scholar
  25. Quiocho, F.A. and Vyas, N.K. (1984)Nature,310, 381–386.Google Scholar
  26. Saper, M.A. and Quiocho, F.A. (1983)J. Biol. Chem.,258, 11057–11062.Google Scholar
  27. Shen, Q., Simplaceanu, V., Cottam, P.F. and Ho, C. (1989a)J. Mol. Biol.,210, 849–857.Google Scholar
  28. Shen, Q., Simplaceanu, V., Cottam, P.F., Wu, J.-L., Hong, J.-S., and Ho, C. (1989b)J. Mol. Biol. 210, 859–867.Google Scholar
  29. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982)J. Magn. Reson.,48, 286–292.Google Scholar
  30. Tabor, S. and Richardson, C.C. (1985)Proc. Natl. Acad. Sci. U.S.A.,82, 1074–1078.Google Scholar
  31. Wagner, G. (1983)Quart. Rev. Biophys.,16, 1–57.Google Scholar
  32. Weiner, J.H. and Heppel, L.A. (1971)J. Biol. Chem.,246, 6933–6941.Google Scholar
  33. Westler, W.M., Kainosho, M., Nagao, H., Tomonaga, N. and Markley, J.L. (1988)J. Am. Chem. Soc.,110, 4093–4095.Google Scholar
  34. Wüthrich, K. (1986)NMR of Proteins and Nucleic Acids, John Wiley and Sons, Inc., New York.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1992

Authors and Affiliations

  • Nico Tjandra
    • 1
  • Virgil Simplaceanu
    • 1
  • Patricia F. Cottam
    • 1
  • Chien Ho
    • 1
  1. 1.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations