, Volume 90, Issue 4, pp 489–499 | Cite as

Structure and dynamic of a natterjack toad metapopulation (Bufo calamita)

  • Ulrich Sinsch
Original Papers


The migratory and reproductive behaviour ofBufo calamita was studied at four neighbouring breeding sites in the northern Rhineland, Germany, from 1986 to 1991. Radio telemetry and marking systems based on toe-clipping and on microchips were used to follow the tracks of toads and for individual recognition. Emphasis lay on estimates of (1) the exchange of reproductive individuals between neighbouring sites, and (2) the reproductive success at each site. Allozyme electrophoresis served to assess the genetic diversity of local populations. More than 90% of all reproductive males showed a lifelong fidelity to the site of first breeding, whereas females did not prefer certain breeding sites. Due to the female-biased exchange of individuals among neighbouring sites the genetic distance between local populations was generally low but increased with geographical distance. This pattern of spatial relations is consistent with the structure of a metapopulation. Morever, up to three mass immigrations of males per breeding period, replacing previously reproductive individuals, suggested the existence of temporal populations successively reproducing at the same locality. Genetic distances were considerably greater between temporal populations than between local ones, indicating partial reproductive isolation. In fact, an exchange of reproductive individuals between the temporal populations at each site was not detected, but gene flow due to the recruitment of first-breeders originating from offspring other than their own seems probable. Thus, natterjack metapopulations consist of interacting local and temporal populations. The reproductive success differed considerably among the four sites and also between the temporal populations. Three out of four local populations had low reproductive success as well as the latest temporal population. The persistence of these populations depended entirely on the recruitment of juveniles from the only self-sustaining local population. This “rescue-effect” impeded local extinction. The discussion focuses on the modifications required to fit the classical metapopulation concept to the empirical findings and their consequences for the dynamics of amphibian metapopulations.

Key words

Bufo calamita Metapopulation Migration Allozymes Genetic diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks B, Beebee TJC (1988) Reproductive success of natterjack toadsBufo calamita in two contrasting habitats. J Anim Ecol 57:475–492Google Scholar
  2. Beebee TJC (1979) A review of scientific information pertaining to the natterjack toadBufo calamita throughout its geographical range. Biol Conserv 16:107–134Google Scholar
  3. Boorman SA, Levitt PR (1973) Group selection on the boundary of a stable population. Theor Popul Biol 4:85–128Google Scholar
  4. Breden F (1987) The effect of post-metamorphic dispersal on the population genetic structure of Fowler's toad,Bufo woodhousei fowleri. Copeia 1987:386–395Google Scholar
  5. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449Google Scholar
  6. Duellman WF (1985) Reproductive modes in anuran amphibians: phylogenetic significance of adaptive strategies. S Afr J Sci 81:174–178Google Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA-sequences—a maximum likelihood approach. J Mol Evol 7:368–376Google Scholar
  8. Flindt R, Hemmer H (1967) Ökologische und variationsstatistische Untersuchungen und einerBufo viridis/Bufo calamita-population. Zool Jahrb Syst 94:162–186Google Scholar
  9. Gill DE (1978a) The metapopulation ecology of the red-spotted newt,Notophthalmus viridescens (Rafinesque). Ecol Monogr 48:145–166Google Scholar
  10. Gill DE (1978b) Effective population size and interdemic migration rates in a metapopulation of the red-spotted newt,Notophthalmus viridescens (Rafinesque). Evolution 32:839–849Google Scholar
  11. Gilpin M, Hanski I (eds) (1991) Metapopulation dynamics: empirical and theoretical investigations Academic Press, LondonGoogle Scholar
  12. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  13. Guttman SI (1975) Genetic variation in the genusBufo II. Isozymes in Northern allopatric populations of the american toadBufo americanus, pp 679–697. In: Markert CL (ed) Isozymes, vol 4. Genetics and evolution. Academic Press, New YorkGoogle Scholar
  14. Hanski I (1985) Single-species spatial dynamics may contribute to long-term rarity and commonness. Ecology 66:335–343Google Scholar
  15. Hcusser H (1969) Die Lebensweise der Erdkröte,Bufo bufo (L.); Das Orientierungsproblem. Rev Suisse Zool 76:443–518Google Scholar
  16. Jorgensen CB, Shakuntala K, Vijayakumar S (1986) Body size, reproduction and growth in a tropical toad,Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans. Oikos 46:379–389Google Scholar
  17. Kadel K (1975) Freilandstudien zur Überlebensrate von Kreuzkrötenlarven (Bufo calamita Laur.). Rev Suisse Zool 82:237–244Google Scholar
  18. Kapfberger D (1984) Untersuchungen zu Populationsaufbau, Wachstum und Ortsbeziehungen der Gelbbauchunke,Bombina variegata variegata (Linnaeus, 1758). Zool Anz 212:105–116Google Scholar
  19. Levins R (1970) Extinction. In: Gerstenhaber M (ed) Some mathematical questions in biology. Lect Math Life Sci 2: 77–107Google Scholar
  20. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292Google Scholar
  21. Nöller HG (1959) Eine einfache Technik der Blutentnahme beim Frosch. Pflügers Arch Physiol 269:98–100Google Scholar
  22. Quinn TP, Wood CC, Margolis L, Riddell BE, Hyatt KD (1987) Homing in wild sockeye salmon (Oncorhynchus nerka) populations as inferred from differences in parasite prevalance and allozyme allele frequencies. Can J Fish Aquat Sci 44:1963–1971Google Scholar
  23. Reh W (1988) Populationsgenetische Untersuchungen am Grasfrosch (Rana temporaria L.; Amphibia: Anura: Ranidae) in der Saarpfälzischen Moorniederung. Thesis, Zoology Institute University of MainzGoogle Scholar
  24. Reh W, Seitz A (1990) The influence of land use on the genetic structure of populations of the common frogRana temporaria. Biol Conserv 54:239–249Google Scholar
  25. Rüst H (1969) Schätzung der Amphibienbestände in einem Teich durch ein Wiederfangverfahren. Vierteljahrsschr Naturforsch Ges Zürich 114:279–291Google Scholar
  26. Sauer H (1988) Autökologische Untersuchungen der Kreuzkröte-Bufo calamita (Laurenti) 1768-und Wechselkröte-Bufo viridis (Laurenti) 1768-als Grundlage für gezielte Schutzmaßnahmen. Thesis, Institute of Applied Zoology, University of BonnGoogle Scholar
  27. Savage (1961) The ecology and life history of the common frog (Rana temporaria temporaria). Pitman, LondonGoogle Scholar
  28. Schoener TW (1991) Extinction and the nature of the metapopulation: a case system. Acta Oecol 12:53–75Google Scholar
  29. Shaw CR, prasad R (1970) Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem Genet 4:297–320Google Scholar
  30. Sherif N (1990) Electrophoretic analysis of species of the genusBufo: taxonomy, phyogeny and population genetics. PhD thesis, Cairo UniversityGoogle Scholar
  31. Sinsch U (1988a) Temporal spacing of breeding activity in the natterjack toad,Bufo calamita. Oecologia 76:399–407Google Scholar
  32. Sinsch U (1988b) Auskiesungen als Sekundärhabitate für bedrohte Amphibien und Reptilien. Salamandra 24: 161–174Google Scholar
  33. Sinsch U (1989): The migratory behaviour of the common toad (Bufo bufo) and the natterjack toad (Bufo calamita). In: Langton TES (ed) Amphibians and roads. ACO Polymer, pp 113–125Google Scholar
  34. Sinsch U (1990a) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79Google Scholar
  35. Sinsch U (1990b) Verhaltens-und ökophysiologische Untersuchungen an einer Kreuzkröten Population: Wanderungen, Orientierung, Reproduktion, Dynamik, Thermoregulation und Wasserhaushalt. Habilitationsschrift, Math-Naturw Fac, University of BonnGoogle Scholar
  36. Sinsch U (1991) Analisis radio-telemetrico de la regulacion termica del sapo andinoBufo spinulosus Bol Lima XIII:65–73Google Scholar
  37. Sinsch U (1992a) Sex-biassed site fidelity and orientation behaviour in reproductive natterjack toads (Bufo calamita). Ethol Ecol Evol 4: 15–32Google Scholar
  38. Sinsch U (1992b) Zwei neue Markierungsmethoden zur individuellen Identifikation von Amphibien in langfristigen Freilanduntersuchungen: erste Erfahrungen mit Kreuzkröten. Salamandra 28:(in press)Google Scholar
  39. Sjögren P (1991) Extinction and isolation gradients in metapopulations: the case of the pool frog (Rana lessonae). Biol J Linn Soc 42: 135–147Google Scholar
  40. Wells KD (1977) The social behaviour of anuran amphibians. Anim Behav 25:666–693Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Ulrich Sinsch
    • 1
  1. 1.Zoologisches Institut der UniversitätBonn 1Federal Republic of Germany

Personalised recommendations