The Journal of Membrane Biology

, Volume 59, Issue 3, pp 179–190 | Cite as

Possible reduction of surface charge by a mutation inParamecium tetraurelia

  • Youko Satow
  • Ching Kung


Under voltage clamp, a mutant ofParamecium tetraurelia (teaB) shows a shift in the positive direction of the voltage sensitivity of the Ca conductance and the depolarization inactivation curve by 10 mV with no change in the total conductance. This effect can be mimicked in the wild type by the addition of external Ca2+ or Mg2+. The mutation also shifts the resting potential and the voltage sensitivities of the delayed rectification (depolarization-sensitive) K conductance and the anomalous rectification (hyperpolarization-sensitive) K conductance in the positive direction to a similar extent. This systematic shift of channel voltage sensitivities is best explained by the reduction of the surface negative charges of the membrane due to the mutation.


Human Physiology Surface Charge Negative Charge Positive Direction Similar Extent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandler, W.K., Hodgkin, A.L., Meves, H. 1965. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.J. Physiol. (London) 180:821Google Scholar
  2. Chang, S.-Y., Kung, C. 1976. Selection and analysis of a mutantParamecium tetraurelia lacking behavioural response to tetraethylammonium.Genet. Res. 27:97Google Scholar
  3. Chang, S.-Y., Van Houten, J., Robles, L.J., Lui, S.S., Kung, C. 1974. An extensive behavioural and genetic analysis of the pawn mutants inParamecium aurelia.Genet. Res. 23:165Google Scholar
  4. Eckert, R., Brehm, P. 1979. Ionic mechanisms of excitation inParamecium.In: Annual Review of Biophysics and Bioengineering. L.J. Mullins, W.A. Hagins, and C.M. Newton, editors. Vol. 8, p. 353. Annual Reviews, Palo AltoGoogle Scholar
  5. Eckert, R., Naitoh, Y., Machemer, H. 1976. Calcium in the bioelectric and motor functions ofParamecium.In: Calcium in Biological Systems. C.J. Duncan, editor. p. 233. Cambridge University Press, London-New York-MelbourneGoogle Scholar
  6. Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218Google Scholar
  7. Geduldig, D., Gruener, R. 1970. Voltage clamp of theAplysia giant neurone: Early sodium and calcium currents.J. Physiol. (London) 211:217Google Scholar
  8. Hennessey, T., Nelson, D.L. 1979. Thermosensory behaviour inParamecium tetraurelia: A quantitative assay and some factors that influence thermal avoidance.J. Gen. Microbiol. 112:337Google Scholar
  9. Kasai, R.Y., Kitajima, Y., Martin, C.E., Nozawa, Y., Skriver, L., Thompson, G.A., Jr. 1976. Molecular control of membrane properties during temperature acclamation. Membrane fluidity regulations of fatty acid desaturase action?Biochemistry 15:5228Google Scholar
  10. Kung, C. 1971. Genic mutants with altered system of excitation inParamecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants.Genetics 63:29Google Scholar
  11. Kung, C., Eckert, R. 1972. Genetic modification of electric properties in an excitable membrane.Proc. Natl. Acad. Sci USA69:93Google Scholar
  12. Naitoh, Y., Eckert, R. 1968. Electrical properties ofParamecium caudatum: Modification by bound and free cations.Z. Vgl. Physiol. 61:427Google Scholar
  13. Oertel, D., Schein, S.J., Kung, C. 1977. Separation of membrane currents using aParamecium mutant.Nature (London) 268:120Google Scholar
  14. Oertel, D., Schein, S.J., Kung, C. 1978. A potassium conductance activated by hyperpolarization inParamecium.J. Membrane Biol. 43:169Google Scholar
  15. Ohmori, H., Yoshii, M. 1977. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.J. Physiol. (London) 267:429Google Scholar
  16. Satow, Y. 1979. A mutation affecting membrane stability inParamecium tetraurelia.Annu. Meet. Soc. Neurosci. (Atlanta) (Abstr.) 5:295Google Scholar
  17. Satow, Y., Kung, C. 1976a. A mutant ofParamecium with increased relative resting potassium permeability.J. Neurobiol. 7:325Google Scholar
  18. Satow, Y., Kung, C. 1976b. Mutants with reduced Ca activation inParamecium aurelia.J. Membrane Biol. 28:277Google Scholar
  19. Satow, Y., Kung, C. 1979. Voltage sensitive Ca-channels and the transient inward current inParamecium tetraurelia.J. Exp. Biol. 78:149Google Scholar
  20. Satow, Y., Kung, C. 1980a. Membrane currents of pawn mutants of thepwA group inParamecium tetraurelia.J. Exp. Biol. 84:57Google Scholar
  21. Satow, Y., Kung, C. 1980b. Ca-induced K+-outward current inParamecium tetraurelia.J. Exp. Biol. 88:293Google Scholar
  22. Sonneborn, T.M. 1970. Methods inParamecium research.In: Methods in Cell Physiology. D. Prescott, editor. Vol. 4, p. 241. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • Youko Satow
    • 1
  • Ching Kung
    • 1
  1. 1.Laboratory of Molecular Biology and Department of GeneticsUniversity of WisconsinMadison

Personalised recommendations