Skip to main content
Log in

Na+/H+ exchange in ehrlich ascites tumor cells: Activation by cytoplasmic acidification and by treatment with cupric sulphate

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Exposure of Ehrlich cells to isotonic Na+-propionate medium induces a rapid cell swelling. This treatment is likely to impose an acid load on the cells. Cell swelling is absent in K+-propionate medium but may be induced by the ionophore nigericin, which mediates K+/H+ exchange. Cell swelling in Na+-propionate medium is blocked by amiloride, but an alternative pathway is introduced by addition of the ionophore monensin, which mediates Na+/H+ exchange. Consequently, swelling of Ehrlich cells in Na+-propionate medium is due to the operation of an amiloride-sensitive, Na+-specific mechanism. It is concluded that this mechanism is a Na+/H+ exchange system, activated by cytoplasmic acidification. We have previously demonstrated that the heavy metal salt CuSO4 in micromolar concentrations inhibits regulatory volume decrease (RVD) of Ehrlich cells following hypotonic swelling. The present work shows that CuSO4 inhibits RVD as a result of a net uptake of sodium, of which the major part is sensitive to amiloride. Measurements of intracellular pH show that CuSO4 causes significant cytoplasmic alkalinization, which is abolished by amiloride. Concomitantly, CuSO4 causes an amiloride-sensitive net proton efflux from the cells. The combined results confirm that a Na+/H+ exchange system exists in Ehrlich cells and demonstrate that the heavy metal salt CuSO4 activates this Na+/H+ exchange system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aronson, P.S., Boron, W.F. (editors). 1986. Na+−H+ exchange, intracellular pH, and cell function.Curr. Topics Membr. Transport 26:3–305

    Google Scholar 

  • Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  • Berridge, M.J. 1984. Inositol triphosphate and diacylglycerol as second messengers.Biochem. J. 220:345–360

    Google Scholar 

  • Bowen, J.W., Levinson, C. 1984. H+ transport and the regulation of intracellular pH in Ehrlich ascites tumor cells.J. Membrane Biol. 79:7–18

    Google Scholar 

  • Cala, P.M. 1985. Volume regulation byAmphiuma red blood cells: Characteristics of volume-sensitive K+/H+ and Na+/H+ exchange.Mol. Physiol. 8:199–214

    Google Scholar 

  • Cala, P.M. 1986. Volume-sensitive alkali metal-H+ transport inAmphiuma red blood cells.Curr. Topics Membr. Transp. 26:79–99.

    Google Scholar 

  • Doppler, W., Maly, K., Grunicke, H. 1986. Role of Na+/H+ antiport in the regulation of the internal pH of Ehrlich ascites tumor cells in culture.J. Membrane Biol. 91:147–155

    Google Scholar 

  • Florence, T.M., Batley, G.E. 1977. Determination of the chemical forms of trace metals in natural waters with special reference to copper, lead, cadmium and zinc.Talanta 24:151–158

    Google Scholar 

  • Frelin, C., Barbry, P., Green, R.D., Jean, T., Vigne, P., Lazdunski, M. 1986. The Na+/H+ antiport of eukaryotic cells: Relationships between the kinetic properties of the system and its physiological function.Biochimie 68:1279–1285

    Google Scholar 

  • Geck, P., Pfeiffer, B. 1985. Na++K++2Cl cotransport in animal cells—its role in volume regulation.Ann. N.Y. Acad. Sci. 456:166–182

    Google Scholar 

  • Gillies, R.J., Ogino, T., Shulman, R.G., Ward, D.C. 1982.31P-nuclear magnetic resonance evidence for the regulation of intracellular pH by Ehrlich ascites tumor cells.J. Cell Biol. 95:24–28

    Google Scholar 

  • Grinstein, S., Clarke, C.A., Rothstein, A. 1983. Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification.J. Gen. Physiol. 82:619–638

    Google Scholar 

  • Grinstein, S., Cohen, S., Goetz, J.D., Rothstein, A. 1985a. Na+/H+ exchange in volume regulation and cytoplasmic pH homeostasis in lymphocytes.Fed. Proc. 44:2508–2512

    Google Scholar 

  • Grinstein, S., Cohen, S., Goetz, J.D., Rothstein, A., Gelfand, E.W. 1985b. Characterization of the activation of Na+/H+ exchange in lymphocytes by phorbol esters: Change in cytoplasmic pH dependence of the antiport.Proc. Natl. Acad. Sci. USA 82:1429–1433

    Google Scholar 

  • Grinstein, S., Cohen, S., Rothstein, A. 1984a. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport.J. Gen. Physiol. 83:341–370

    Google Scholar 

  • Grinstein, S., Furuya, W. 1986. Characterization of the amiloride-sensitive Na+−H+ antiport of human neutrophils.Am. J. Physiol. 250:C283-C291

    Google Scholar 

  • Grinstein, S., Goetz, J.D., Furuya, W., Rothstein, A., Gelfand, E.W. 1984b. Amiloride-sensitive Na+−H+ exchange in platelets and leukocytes: Detection by electronic cell sizing.Am. J. Physiol. 247:C293-C298

    Google Scholar 

  • Grinstein, S., Rothstein, A. 1986. Mechanisms of regulation of the Na+/H+ exchanger.J. Membrane Biol. 90:1–12

    Google Scholar 

  • Grinstein, S., Rothstein, A., Sarkadi, B., Gelfand, E.W. 1984c. Responses of lymphocytes to anisotonic media: Volume-regulating behavior.Am. J. Physiol. 246:C204-C215

    Google Scholar 

  • Heinz, A., Sachs, G., Schafer, J.A. 1981. Evidence for activation of an active electrogenic proton pump in Ehrlich ascites tumor cells during glycolysis.J. Membrane Biol. 61:143–153

    Google Scholar 

  • Hendil, K.B., Hoffmann, E.K. 1974. Cell volume regulation in Ehrlich ascites tumor cells.J. Cell. Physiol. 84:115–126

    Google Scholar 

  • Hoffmann, E.K. 1978. Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells.In: Osmotic and volume regulation. C.B. Jørgensen and E. Skadhauge, editors. pp. 377–412. Munksgaard, Copenhagen

    Google Scholar 

  • Hoffmann, E.K. 1987. Volume Regulation in Cultured cells.In: Curr. Top. Membr. Transp. 30:125–179

  • Hoffmann, E.K., Hendil, K.B. 1976. The role of amino acids and taurine in isosmotic intracellular regulation in Ehrlich ascites mouse tumour cells.J. Comp. Physiol. 18:279–286

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells.J. Physiol. (London) 338:613–625

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1986. Separate, Ca2+ activated K+ and Cl transport pathways in Ehrlich ascites tumor cells.J. Membrane Biol. 91:227–244

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Sjøholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.J. Physiol. (London) 296:61–84

    Google Scholar 

  • Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1983. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membrane Biol. 76:269–280

    Google Scholar 

  • Igarashi, P., Aronson, P.S. 1987. Covalent modification of the renal Na/H exchanger by N,N′-dicyclohexylcarbodiimide.J. Biol. Chem. 262:860–868

    Google Scholar 

  • Jennings, M.L., Douglas, S.M., McAndrew, P.E. 1986. Amiloride-sensitive sodium-hydrogen exchange in osmotically shrunken rabbit red blood cells.Am. J. Physiol. 251:C32-C40

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1973. Transport pathways in frog skin and their modification by copper.In: Secretory Mechanisms of Exocrine Glands. N.A. Thorn and O.H. Peterson, editors. pp. 411–419. Alfred Benzon Symposium VII. Munksgaard, Copenhagen

    Google Scholar 

  • Kramhøft, B., Lambert, I.H., Hoffmann, E.K. 1987a. Demonstration of Na+/H+ exchange in Ehrlich ascites tumor cells by electronic cell sizing.Acta Physiol. Scand. 129:20A

    Google Scholar 

  • Kramhøft, B., Lambert, I.H., Hoffmann, E.K. 1987b. Activation of Na+/H+ exchange in Ehrlich ascites tumor cells by cupric sulfate.Acta Physiol. Scand. 129:19A

    Google Scholar 

  • Kregenow, F.M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic medium.Annu. Rev. Physiol. 43:493–505

    Google Scholar 

  • Lambert, I.H., Kramhøft, B., Hoffmann, E.K. 1984. Effect of copper on volume regulation in Ehrlich ascites tumour cells.Mol. Physiol. 6:83–98

    Google Scholar 

  • Livne, A., Hoffmann, E.K. 1988. Cytoplasmic acidification during regulatory volume decrease in Ehrlich ascites tumour cells.J. Membrane Biol. (Submitted)

  • Moolenaar, W.H. 1986. Effects of growth factors on intracellular pH regulation.Annu. Rev. Physiol. 48:363–376

    Google Scholar 

  • Moolenaar, W.H., Tertoolen, L.G.J., Laat, S.W. de 1984. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature (London)312:371–374

    Google Scholar 

  • Montrose, M.H., Murer, H. 1986. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.J. Membrane Biol. 93:33–42

    Google Scholar 

  • Parker, J.C. 1983. Volume-responsive sodium movements in dog red blood cells.Am. J. Physiol. 244:C324-C330

    Google Scholar 

  • Passow, H., Rothstein, A., Clarkson, T.W. 1961. The general pharmacology of the heavy metals.Pharmacol. Rev. 13:185–223

    Google Scholar 

  • Riisgård, H.U. 1979. Effect of copper on volume regulation in the marine flagellateDunaliella marina.Marine Biol. 50:189–193

    Google Scholar 

  • Riisgård, H.U., Nørgård-Nielsen, K., Søgård-Jensen, B. 1980. Further studies on volume regulation and effect of copper in relation to pH and EDTA in the naked marine flagellateDunaliella marina.Marine Biol. 56:267–276

    Google Scholar 

  • Rittenhouse, H.G., Rittenhouse, J.W., Takemoto, L. 1978. Characterization of the cell coat of Ehrlich ascites tumor cells.Biochemistry 17:829–837

    Google Scholar 

  • Schmitt, R.C., Darwish, H.M., Cheney, J.G., Ettinger, M.J. 1983. Copper transport kinetics by isolated rat hepatocytes.Am. J. Physiol. 244:G183-G191

    Google Scholar 

  • Thomas, J.A., Buchsbaum, R.N., Zimniak, A., Racher, E. 1979. Intracellular pH measurements in Ehrlich ascites tumour cells utilizing spectroscopic probes generated in situ.Biochemistry 18:2210–2218

    Google Scholar 

  • Tiffert, T., Garcia-Sancho, J., Lew, L.V. 1984. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells.Biochim. Biophys. Acta 773:143–156

    Google Scholar 

  • Wiener, E., Dubyak, G., Scarpa, A. 1986. Na+/H+ exchange in Ehrlich ascites tumor cells. Regulation by extracellular ATP and 12-O-tetradecanoylphorbol 13-acetate.J. Biol. Chem. 261:4529–4534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramhøft, B., Lambert, I.H. & Hoffmann, E.K. Na+/H+ exchange in ehrlich ascites tumor cells: Activation by cytoplasmic acidification and by treatment with cupric sulphate. J. Membrain Biol. 102, 35–48 (1988). https://doi.org/10.1007/BF01875351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875351

Key Words

Navigation