Acta Mathematica Hungarica

, Volume 65, Issue 3, pp 243–251 | Cite as

Asymptotic stability for functional differential equations

  • T. A. Burton
  • G. Makay


Differential Equation Asymptotic Stability Functional Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. J. Ballieu and K. Pfeiffer, Attractivity of the origin for the equationx″+f(t, x, x′)|x′| ax′+g(x)=0,J. Math. Anal. Appl.,65 (1978), 321–332.Google Scholar
  2. [2]
    T. A. Burton, Uniform asymptotic stability in functional differential equations,Proc. Amer. Math. Soc.,68 (1978), 195–199.Google Scholar
  3. [3]
    L. Becker, T. A. Burton and S. Zhang, Functional differential equations and Jensen's inequality,J. Math. Anal. Appl.,138 (1989), 137–156.Google Scholar
  4. [4]
    T. A. Burton, A. Casal and A. Somolinos, Upper and lower bounds for Liapunov functionals,Funkcial. Ekvac.,32 (1989), 23–55.Google Scholar
  5. [5]
    T. A. Burton and L. Hatvani, Stability theorems for nonautonomous functional differential equations by Liapunov functionals,Tohoku Math. J.,41 (1989), 65–104.Google Scholar
  6. [6]
    S. N. Busenberg and K. L. Cooke, Stability conditions for linear non-autonomous delay differential equations,Quart. Appl. Math.,42 (1984), 295–306.Google Scholar
  7. [7]
    N. N. Krasovskii,Stability of Motion, Stanford University Press (1963).Google Scholar
  8. [8]
    G. Makay, On the asymptotic stability in terms of two measures for functional differential equations,J. Nonlinear Anal.,16 (1991), 721–727.Google Scholar
  9. [9]
    M. Marachkov, On a theorem on stability,Bull. Soc. Phy. Math., Kazan,12 (1940), 171–174.Google Scholar
  10. [10]
    R. A. Smith, Asymptotic stability ofx″+a(t)x′+x=0,Quart. J. Math. Oxford Ser. (2),12 (1961), 123–126.Google Scholar
  11. [11]
    L. H. Thurston and J. S. W. Wong, On global stability of certain second order differential equations with integrable forcing terms,SIAM J. Appl. Math.,24 (1973), 50–61.Google Scholar
  12. [12]
    T. Wang, Asymptotic stability and the derivatives of solutions of functional differential equations,Rocky Mountain J., to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • T. A. Burton
    • 1
  • G. Makay
    • 1
  1. 1.Department of mathematicsSouthern illinois university of carbondaleCarbondaleU.S.A.

Personalised recommendations