Acta Mathematica Hungarica

, Volume 68, Issue 3, pp 187–195 | Cite as

Functional equations on convex sets

  • Z. Daróczy
  • GY. Maksa


Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Aczél,Lectures on Functional Equations and Their Applications, Academic Press (New York and London, 1966).Google Scholar
  2. [2]
    D. Ž. Djokovič, A representation theorem for (X 1−1)(X 2−1)...(X n−1), and its applications,Ann. Polon. Math.,22 (1969), 189–198.Google Scholar
  3. [3]
    G. H. Hardy, J. E. Littlewood and G. Pólya,Inequalities (Cambridge, 1934).Google Scholar
  4. [4]
    M. Kuczma,An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Univ. Ślask-P.W.N. (Warsawa-Kraków-Katowice, 1985).Google Scholar
  5. [5]
    R. Larsen,Functional Analysis, Marcel Dekker, INC (New York, 1973).Google Scholar
  6. [6]
    W. Rudin,Functional Analysis (New York, 1973).Google Scholar
  7. [7]
    L. Székelyhidi, An extension theorem for a functional equation.Publ. Math. Debrecen,28 (1981), 257–279.Google Scholar
  8. [8]
    L. Székelyhidi,Convolution Type Functional Equations on Topological Abelian Groups, World Scientific (Singapore-New Jersey-London-Hong Kong, 1991).Google Scholar
  9. [9]
    L. Székelyhidi, Local polynomials and functional equations,Publ. Math. Debrecen,30, (1983), 283–290.Google Scholar
  10. [10]
    K. Yosida,Functional Analysis (New York, 1980).Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • Z. Daróczy
    • 1
  • GY. Maksa
    • 1
  1. 1.Institute of Mathematics and InformaticsL. Kossuth University DebrecenDebrecen PF. 12

Personalised recommendations