Acta Mathematica Hungarica

, Volume 68, Issue 3, pp 187–195 | Cite as

Functional equations on convex sets

  • Z. Daróczy
  • GY. Maksa


Functional Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Aczél,Lectures on Functional Equations and Their Applications, Academic Press (New York and London, 1966).Google Scholar
  2. [2]
    D. Ž. Djokovič, A representation theorem for (X 1−1)(X 2−1)...(X n−1), and its applications,Ann. Polon. Math.,22 (1969), 189–198.Google Scholar
  3. [3]
    G. H. Hardy, J. E. Littlewood and G. Pólya,Inequalities (Cambridge, 1934).Google Scholar
  4. [4]
    M. Kuczma,An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Univ. Ślask-P.W.N. (Warsawa-Kraków-Katowice, 1985).Google Scholar
  5. [5]
    R. Larsen,Functional Analysis, Marcel Dekker, INC (New York, 1973).Google Scholar
  6. [6]
    W. Rudin,Functional Analysis (New York, 1973).Google Scholar
  7. [7]
    L. Székelyhidi, An extension theorem for a functional equation.Publ. Math. Debrecen,28 (1981), 257–279.Google Scholar
  8. [8]
    L. Székelyhidi,Convolution Type Functional Equations on Topological Abelian Groups, World Scientific (Singapore-New Jersey-London-Hong Kong, 1991).Google Scholar
  9. [9]
    L. Székelyhidi, Local polynomials and functional equations,Publ. Math. Debrecen,30, (1983), 283–290.Google Scholar
  10. [10]
    K. Yosida,Functional Analysis (New York, 1980).Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • Z. Daróczy
    • 1
  • GY. Maksa
    • 1
  1. 1.Institute of Mathematics and InformaticsL. Kossuth University DebrecenDebrecen PF. 12

Personalised recommendations