Acta Mathematica Hungarica

, Volume 69, Issue 1–2, pp 83–93 | Cite as

An explicit estimate of exponential sums associated with a cubic polynomial

  • K. A. M. Atan


Explicit Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. H. Chalk and R. A. Smith, Sandor's Theorem on Polynomial Congruences and Hensel's Lemma,C. R. Math. Rep. Acad. Sci. Canada,4 (1982), 49–54.Google Scholar
  2. [2]
    P. Deligne, La conjecture de Weil,Publ. Math. IHES,43 (1974), 273–307.Google Scholar
  3. [3]
    R. Hartshorne,Algebraic Geometry, Springer Verlag (New York, Berlin, 1977), pp. 53–54.Google Scholar
  4. [4]
    N. Koblitz,p-adic Numbers, p-adic Analysis and Zeta Functions, Springer Verlag (New York, Berlin, 1977).Google Scholar
  5. [5]
    J. H. Loxton and R. A. Smith, Estimates for multiple exponential sums,J. Austral. Math. Soc.,33 (1982), 125–134.Google Scholar
  6. [6]
    J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums,Canad. Math. Bull.,28 (1985), 440–454.Google Scholar
  7. [7]
    K. A. M. Atan and J. H. Loxton, Newton polyhedra and solutions of congruences, inDiophantine Analysis, Ed. J. H. Lcxton and A. J. van der Poorten, London Math. Soc. Lecture Note Series 109 (Cambridge, 1986), pp. 67–82.Google Scholar
  8. [8]
    K. A. M. Atan, An estimate for multiple exponential sums in two variable.Sains Malaysiana,18 (1989), 129–135.Google Scholar
  9. [9]
    K. A. M. Atan, A method for determining the cardinality of the set of solutions to congruence equations,Pertaniko 11 (1988), 125–131.Google Scholar
  10. [10]
    K. A. M. Atan and I. B. Abdullah, On the estimate to solutions of congruence equations associated with a cubic form,Pertanika J. Sci. & Technol.,1 (1993), 1–10.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • K. A. M. Atan
    • 1
  1. 1.Department of MathematicsUniversity Pertanian MalaysiaSelangor Darul EhsanMalaysia

Personalised recommendations