Acta Mathematica Hungarica

, Volume 63, Issue 4, pp 371–374 | Cite as

A simple proof for König's minimax theorem

  • G. Kassay


Simple Proof Minimax Theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Kneser, Sur un théorème fondamental de la théorie des jeux,C. R. Acad. Sci. Paris,234 (1952), 2418–2420.Google Scholar
  2. [2]
    K. Fan, Minimax theorems,Proc. Nat. Acad. Sci. USA,39 (1953), 42–47.Google Scholar
  3. [3]
    H. König, Über das von Neumannsche Minimax-Theorem,Arch. Math.,19 (1968), 482–487.Google Scholar
  4. [4]
    H. König, On certain applications of the Hahn-Banach and minimax theorems,Arch. Math.,21 (1970), 583–591.Google Scholar
  5. [5]
    I. Joó, A simple proof for von Neumann's minimax theorem,Acta Sci. Math. (Szeged),42 (1980), 91–94.Google Scholar
  6. [6]
    L. L. Stachó, Minimax theorems beyond topological vector spaces,Acta. Sci. Math. (Szeged),42 (1980), 157–164.Google Scholar
  7. [7]
    I. Joó, and L. L. Stachó, A note on Ky Fan's minimax theorem,Acta Math. Acad. Sci. Hungar.,39 (1982), 401–407.Google Scholar
  8. [8]
    I. Joó, Note on my paper “A simple proof for von Neumann's minimax theorem”,Acta Math. Hungar.,44 (1984), 363–365.Google Scholar
  9. [9]
    Z. Sebestyén, An elementary minimax theorem,Acta Sci. Math. (Szeged),47 (1984), 457–459.Google Scholar
  10. [10]
    M. A. Geraghty and B. L. Lin, Minimax theorems without linear structure,Linear and Multilinear Algebra,17 (1985), 171–180.Google Scholar
  11. [11]
    S. Simons, Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems,Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983),Proc. Symp. Pure Math.,45 (1986), 377–392.Google Scholar
  12. [12]
    Z. Sebestyén, An elementary minimax inequality,Per. Math. Hung.,17 (1986), 65–69.Google Scholar
  13. [13]
    M. Horváth and A. Sövegjártó, On convex functions,Annales Univ. Sci. Budapest., Sect. Math.,29 (1986), 193–198.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • G. Kassay
    • 1
  1. 1.Faculty of MathematicsBabes-Bolyai UniversityClujRomania

Personalised recommendations