Advertisement

Acta Mathematica Hungarica

, Volume 66, Issue 1–2, pp 25–50 | Cite as

Weighted (0,2)-interpolation on the roots of Jacobi polynomials

  • I. Joó
  • L. Szili
Article

Keywords

Jacobi Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Balázs, Súlyozott (0,2)-interpoláció ultraszférikus polinomok gyökein,MTA III. Oszt. Közl. 11 (1961), 305–338.Google Scholar
  2. [2]
    I. E. Gopengauz, On a theorem of A. F. Timan on approximation of functions by polynomials on a finite interval,Mat. Zametki,1 (1967), 163–172.Google Scholar
  3. [3]
    I. Joó, Stabil interpolációrólMTA III. Oszt. Közl.,23 (1974), 329–363.Google Scholar
  4. [4]
    I. Joó, On interpolation on the roots of Jacobi polynomials,Annales Univ. Sci. Budapest, Sect. Math.,17, (1974), 119–124.Google Scholar
  5. [5]
    G. I. Natanson, Two-sided estimate for the Lebesgue function of the Lagrange interpolation with Jacobi nodes,Izv. Vyss. Ucebn. Zaved. Matematika,11 (1967), 67–74 (Russian).Google Scholar
  6. [6]
    J. Prasad, On the weighted (0,2) interpolation,SIAM J. Numer., Anal.,7 (1970), 428–446.Google Scholar
  7. [7]
    J. Prasad and E. J. Eckert, On the representation of functions by interpolatory polynomials,Mathematica (Cluj),15 (1973), 289–305.Google Scholar
  8. [8]
    J. Prasad, On the uniform convergence of interpolatory polynomials,J. Austral. Math. Soc. (Series A),27, (1979), 7–16.Google Scholar
  9. [9]
    G. Szegő,Orthogonal polynomials, Amer. Math. Soc. Coll. Publ. (New York, 1959).Google Scholar
  10. [10]
    L. Szili, Weighted (0,2)-interpolation on the roots of Hermite polynomials,Annales Univ. Sci. Budapest, Sect. Math.,27 (1985), 153–166.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • I. Joó
    • 1
  • L. Szili
    • 1
  1. 1.Department of AnalysisLoránd Eötvös UniversityBudapestHungary

Personalised recommendations