Skip to main content

Advertisement

Log in

Assessing representativeness of places for conservation reservation and heritage listing

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Problems arising from application of the representative criterion for conservation and natural heritage evaluation are discussed. An ecological basis to this criterion is suggested that focuses on those key environmental factors dominating biotic response. A methodology is proposed that utilizes computer-based methods of establishing and interrogating spatial data bases (geographic information systems), environmental modeling, and numeric analysis. An example is presented illustrating some of the advantages and limitations of classification and dimension reduction techniques in both defining bioenvironments and displaying their spatial distribution. The advantages of this method for representativeness evaluation are that it maximizes the utility of available data, is explicit and repeatable, and enables large areas to be analyzed at relatively fine scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Austin, M. P., and C. R. Margules. 1984. The concept of representativeness in conservation evaluation with particular relevance to Australia. Technical Memorandum 84/11. CSIRO Division of Water and Land Resources, Canberra, 43 pp.

    Google Scholar 

  • Belbin, L., C. Marshall, and D. Faith. 1983. Representing relationships by automatic assignment of colour.Australian Computer Journal 15:160–163.

    Google Scholar 

  • Belbin, L., D. P. Faith, and P. R. Minchin. 1984. Some algorithms contained in the numerical taxonomy package NTP. Technical Memorandum 84/23.CSIRO Division of Water and Land Resources, Canberra, 31 pp.

    Google Scholar 

  • Bolton, M. P., and R. L. Specht. 1983. A method for selecting nature conservation reserves. Occasional Paper 8. Australian National Parks and Wildlife Service, Canberra, 32 pp.

    Google Scholar 

  • Booth, T. H. 1985. A new method for assisting species selection.Commonwealth Forestry Review 64:241–250.

    Google Scholar 

  • Bristow, K. L., G. S. Campbell, K. S. Saxton. 1985. An equation for separating daily solar radiation into direct and diffuse components.Agricultural and Forest Meteorology 35:123–131.

    Google Scholar 

  • Busby, J. R. 1986. A biogeoclimatic analysis of Nothofagus cunninghamii (HOOK) Oerst in eastern Australia 1.Australian Journal of Ecology 11:1–7.

    Google Scholar 

  • Christian, C. S., G. A. Stewart. 1953. General report on the survey of Katherine-Darwin region, 1946. Land Research Series 1. CSIRO, Melbourne, 156 pp.

    Google Scholar 

  • Clements, F. E. 1928. Plant succession and indicators. H. W. Wilson, New York, 453 pp.

    Google Scholar 

  • Dale, M. B. 1975. On objectives of methods of ordination.Vegetation 30:15–32.

    Google Scholar 

  • Dasmann, R. E. 1973. A system for defining and classifying natural regions for purposes of conservation: a progress report. IUCN Occasional Paper 7. International Union for Conservation of Nature and Natural Resources, Morges, Switzerland. 47 pp.

    Google Scholar 

  • Gleason, H. A. 1939. The individualistic concept of the plant association.The American midland naturalist 21:92–110.

    Google Scholar 

  • Gower, J. C. 1971. A general coefficient of similarity and some of its properties.Biometrics 27:857–871.

    Google Scholar 

  • Hutchinson, C. E. 1957. Concluding remarks: Cold Spring Harbour symposium.Quaternary Biology 22:415–427.

    Google Scholar 

  • Hutchinson, M. F. 1984. A summary of some surface-fitting and contouring programs for noisy data. Consulting Report ACT 84/6. CSIRO Division of Mathematics and Statistics and the Division of Water and Land Resources, Canberra, 24 pp.

    Google Scholar 

  • Hutchinson, M. F., and R. J. Bischoff. 1984. A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to the Hunter Valley, NSW, Australia.Australian Meteorological Magazine 31:179–184.

    Google Scholar 

  • Hutchinson, M. F., T. H. Booth, J. P. McMahon, and H. A. Nix. 1984. Estimating monthly mean values of daily total solar radiation for Australia.Solar Energy 32:227–290.

    Google Scholar 

  • Kalma, J. D., and P. M. Fleming. 1972. A note on estimating the direct and diffuse components of global radiation.Archiv für Meteorologie, Geophysick und Bioklimatologie [B] 20:191–205.

    Google Scholar 

  • Kruskal, J. B., and M. Wish. 1978. Multidimensional scaling. Series: quantitative applications in the social sciences, number 07-011. Sage, Beverly Hills, California, 93 pp.

  • Laut, P., C. Margules, and H. A. Nix. 1975. Australian biophysical regions: a preliminary regionalisation. CSIRO Land Use Research. AGPS, Canberra, 89 pp.

    Google Scholar 

  • McIntosh, R. P. 1967. The continuum concept of vegetation.Botanical Review 33:130–187.

    Google Scholar 

  • Minchin, P. R. 1986. How to use ECOPAK: an ecological data base system. Technical Memorandum 86/6. CSIRO Division of Water and Land Resources, Canberra, 138 pp.

    Google Scholar 

  • Nix, H. A. 1982. Environmental determinants and evolution in Terra Australis. Pages 47–66in W. R. Barker and P. J. M. Greenslade (eds.), Evolution of the flora and fauna of arid Australia. Peacock, South Australia.

    Google Scholar 

  • Nix, H. A. 1986. A biogeographic analysis of Australian elapid snakes. Pages 4–15in R. Longmore (ed.), Atlas of elapid snakes of Australia. Australian Flora and Fauna Series No. 7. AGPS, Canberra.

    Google Scholar 

  • Nix, H. A., and M. P. Austin. 1973. Mulga: a bioclimatic analysis.Tropical Grasslands 7:9–21.

    Google Scholar 

  • Northcote, K. H., with G. G. Beckman, E. Bettenay, H. M. Churchward, D. G. van Dijk, G. M. Dimmock, G. D. Hubble, R. F. Isbell, W. M. McArthur, G. G. Murtha, K. D. Nicolls, T. R. Paton, C. H. Thompson, A. A. Webb, and M. J. Wright. 1960–68. Atlas of Australian soils. Sheets 1–10, with explanatory booklets. CSIRO and Melbourne University Press, Melbourne.

    Google Scholar 

  • Rowe, J. S., and J. W. Sheard. 1981, Ecological land classification: a survey approach.Environmental Management 5:451–464.

    Google Scholar 

  • Specht, R. L. 1981. Foliage projective cover and standing biomass. Pages 10–21in A. N. Gillison and D. J. Anderson (eds), Vegetation classification in Australia. CSIRO/ANU, Canberra.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackey, B.G., Nix, H.A., Hutchinson, M.F. et al. Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management 12, 501–514 (1988). https://doi.org/10.1007/BF01873263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01873263

Key words

Navigation