Skip to main content
Log in

Rouleau formation of erythrocytes: A dynamical model

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A model is presented for the nonBrownian motion of living erythrocytes suspended in their own plasma as observed by Rowlands et al. On the basis of this model, the formation of rouleaux (contractile fibrils among interacting erythrocytes) can be described in terms of an organization of the molecules (mainly fibrinogen) present in blood plasma; this organization is sustained by the nonlinear propagation of electric vibrations generated by red blood cells (coherent electric vibrations of the Fröhlich type).

A number of peculiar experimental features otherwise unexplained can also be taken into account in the framework of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askar'yan, G. A. 1962.Sov. Phys. JETP 15, 1088.

    Google Scholar 

  • Askar'yan, G. A. 1974.Sov. Phys. Usp. 16, 680.

    Google Scholar 

  • Butukhanov, V. V.; Ippolitova, Ye. G. 1982.Biophysics 27, 153.

    Google Scholar 

  • Chiao, R. Y.; Garmire, E.; Townes, G. H. 1964.Phys. Rev. Lett. 13, 479.

    Google Scholar 

  • Colli, L.; Facchini, U. 1954.Nuovo Cimento 12, 150.

    Google Scholar 

  • Del Giudice, E.; Doglia, S.; Milani, M. 1982.Phys. Lett. A 90, 104.

    Google Scholar 

  • Del Giudice, E.; Doglia, S.; Milani, M. 1983. In “Coherent Excitations in Biological Systems”, H. Frohlich and F. Kremer (Eds.), Springer, Berlin, p. 123.

    Google Scholar 

  • Devyatkov, N. D. 1974.Sov. Phys. Usp. 16 568.

    Google Scholar 

  • Edelmann, G. M. 1984.Sci. Am. 250, 80.

    Google Scholar 

  • Einstein, A.; Laub, J. 1908.Ann. Phys. (Leipzig)26, 541.

    Google Scholar 

  • Fredericq, E.; Houssier, C. 1975. In “Electric Dichroism and Electric Birefringence” Clarendon, Oxford.

    Google Scholar 

  • Fröhlich, H. 1977.Nuovo Cimento 7, 399.

    Google Scholar 

  • Fröhlich, H. 1980.Adv. Electron. Electron Phys. 53, 85.

    Google Scholar 

  • Garmire, E.; Chiao, R. Y.; Townes, C. H. 1966.Phys. Rev. Lett. 16, 347.

    Google Scholar 

  • Grundler, W.; Keilmann, F.; Putterlik, V.; Santo, L.; Strube, D.; Zimmermann, I. 1983. In “Coherent Excitations of Biological Systems” (H. Frohlich and F. Kremer, Eds.) Springer, Berlin, p. 21.

    Google Scholar 

  • Haschemeyer, A. V. 1963.Biochemistry 2, 851.

    Google Scholar 

  • Haschemeyer, A. V.; Tinoco, I. Jr. 1962.Biochemistry, 1, 996.

    Google Scholar 

  • Holcomb, D. N.; Tinoco, I., Jr. 1963.J. Phys. Chem. 67, 2691.

    Google Scholar 

  • Jafary-Asl, A. M.; Smith, C. W. 1983. Biological Dielectrics in Electric and Magnetic Fields. Annual Report, Conference on Electrical Insulation and Dielectric Phenomena, Oct. 16–20, IEEE Publ. N. 83CM 1902–6, 350–355.

    Google Scholar 

  • Karu, T. J.; Tiphlova, O. A.; Letokhov, V. S.; Lobko, Y. V. 1983.Nuovo Cimento 2D, 1138.

    Google Scholar 

  • Krause, S.; O'Konski, C. T. 1959.J. Am. Chem. Soc. 81, 5082.

    Google Scholar 

  • Landau, L.; Lifchitz, E. 1969. “Electrodynamique des milieu continus”, Mir, Moscow.

    Google Scholar 

  • Li, K. H.; Popp, F. A.; Nagl, W.; Klima, H. 1983. In “Coherent Excitations in Biological Systems”, H. Frohlich and F. Kremer (Eds.), Springer, Berlin, p. 117.

    Google Scholar 

  • Marburger, J. H. 1975.Prog. Quant. Electr. 4, 35.

    Google Scholar 

  • Mayer, G.; Gires, F. 1962.C. R. Hebd. Seances Acad. Sci. 258, 2039.

    Google Scholar 

  • Paul, R. 1983.Phys. Lett. A 96, 263.

    Google Scholar 

  • Paul, R.; Chatterjee, R.; Tuszynski, J. A.; Fritz, O. G. 1983.J. Theor. Biol. 104, 169.

    Google Scholar 

  • Pohl, H. 1983. In “Coherent Excitations in Biological Systems” (H. Frohlich, F. Kremer, Eds.) Springer, Berlin, p. 199.

    Google Scholar 

  • Powers, J. C., Jr.; Peticolas, W. L. 1967.Adv. Chem. Ser. 63, 217.

    Google Scholar 

  • Prigogine, I.; Nicolis, G. 1977. “Self-Organization in Non Equilibrium Systems, from Dissipative Structures to Order Through Fluctuations”. Wiley, New York.

    Google Scholar 

  • Rowlands, S. 1983. In “Coherent Excitations in Biological Systems”, H. Frohlich and F. Kremer (Eds.), Springer, Berlin, p. 145.

    Google Scholar 

  • Rowlands, S.; Sewchand, L. S.; Lovlin, R. E.; Beck, J. S.; Enns, E. G. 1981.Phys. Lett. A 82, 436.

    Google Scholar 

  • Rowlands, S.; Sewchand, L. S.; Enns, E. G. 1982.Phys. Lett. A 87, 256.

    Google Scholar 

  • Rowlands, S.; Sewchand, L. S.; Skibo, L. 1983.Cell Biophys. 5, 197.

    Google Scholar 

  • Sewchand, L. S.; Roberts, D.; Rowlands, S. 1982.Cell Biophys. 4, 253.

    Google Scholar 

  • Talanov, V. I. 1965.JETP Lett. 2, 138.

    Google Scholar 

  • Shen, Y. R. 1975.Prog. Quant. Electr. 4, 1.

    Google Scholar 

  • Tinoco, I., Jr. 1955.J. Am. Chem. Soc. 77, 3476.

    Google Scholar 

  • Tinoco, I., Jr.; Ferry, G. D. 1954.J. Am. Chem. Soc. 76, 5573.

    Google Scholar 

  • Webb, S. J. 1980.Phys. Rep. 60, 201.

    Google Scholar 

  • Yoshioka, K. 1976. InMolecular Electro-Optics (C. T. O'Konski Ed.) Dekker, New York and Basel, p. 601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Giudice, E., Doglia, S. & Milani, M. Rouleau formation of erythrocytes: A dynamical model. J Biol Phys 13, 57–68 (1985). https://doi.org/10.1007/BF01873109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01873109

Keywords

Navigation