The Journal of Membrane Biology

, Volume 48, Issue 3, pp 237–247 | Cite as

Metabolic dependence of the offset of antidiuretic hormone-induced osmotic flow of water across the toad urinary bladder

  • Barry R. Masters
  • Darrell D. Fanestil


The elevated osmotic permeability to water induced by antidiuretic hormone (ADH) in the isolated urinary bladder of the toad is rapidly reversed by removal or washout of the ADH. This return to normal water permeability is delayed by the suppression of production of metabolic energy by any of three maneuvers: (i) low temperature (2°C); (ii) inhibition of oxidative phosphorylation (10mm azide or 0.5mm 2,4 dinitrophenol); or (iii) inhibition of glycolysis (10mm iodoacetate or 10mm 2-deoxyglucose). Moreover, exposure to cytochalasin B, 2.1×10−5m, either before or after initiation of the hormonal effect also delays the return of water permeability to normal following removal of ADH. When considered within constraints imposed by models which predict ADH's action on water permeability to be either via modulation of the fluidity of lipids in the membrane or via the figuration of proteins (“pores”) in the lipid membrane, these observations on the inhibition of the reversal of ADH stimulation of water flow are more consistent with the protein (pore) theory and place limitations on the mechanisms by which proteins in such pores can return to the resting or impermeable state.


Azide Antidiuretic Hormone Urinary Bladder Oxidative Phosphorylation Water Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreoli, T.E., Schafer, S.A. 1976. Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia.Annu. Rev. Physiol. 38:451PubMedGoogle Scholar
  2. Axline, S.G., Reaven, E.P. 1974. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B.J. Cell Biol. 62:647CrossRefPubMedGoogle Scholar
  3. Bentley, P.J. 1958. The effects of neurohypophyseal extracts on water transfer across the wall of the isolated urinary bladder of the toadBufo Marinus.J. Endocrinol. 17:201PubMedGoogle Scholar
  4. Bourguet, J., Lemonnier, R., Carasso, N., Favard, P., Delaunay, N.D. 1975. Ultrastructure et permeabilite A L'Eua de L'Epithelium isole de la Vessie de grenouille.J. Microsc. Biol. Cell. 23:139Google Scholar
  5. Chapman, D. 1975. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys.8:185Google Scholar
  6. Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129PubMedGoogle Scholar
  7. Civan, M.M., DiBona, D.R. 1974. Pathways for movement of ions and water across toad urinary bladder. II. Site and mode of action of vasopressin.J. Membrane Biol. 19:195CrossRefGoogle Scholar
  8. Davis, W.L., Goodman, D.B.P., Schuster, R.J., Rasmussen, H., Martin, J.H. 1974. Effects of cytochalasin B on the response of toad urinary bladder to vasopressin.J. Cell Biol. 63:986CrossRefPubMedGoogle Scholar
  9. DeSousa, R.C., Grosso, A., Rufener, C. 1974. Blockade of the hydroosmotic effect of vasopressin by cytochalasin B.Experientia 15:177Google Scholar
  10. DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79Google Scholar
  11. Edelman, I.S., Petersen, M.J., Gulyassy, P.F. 1964. Kinetic analysis of the antidiuretic action of vasopressin and adenosine-3′, 5′-monophosphate.J. Clin. Invest. 43:2185PubMedGoogle Scholar
  12. Eggena, P. 1972. Temperature dependence of vasopressin action on the toad bladder.J. Gen. Physiol. 59:519PubMedGoogle Scholar
  13. Finkelstein, A. 1976. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues.J. Gen. Physiol. 68:137PubMedGoogle Scholar
  14. Handler, J.S., Orloff, J. 1973. The mechanism of action of antidiuretic hormone.In: Handbook of Physiology, Section 8, Renal Physiology. Chapter 24. American Physiological Society, Washington, D.C.Google Scholar
  15. Handler, J.S., Petersen, M., Orloff, J. 1966. Effect of metabolic inhibitors on the response of the toad bladder to vasopressin.Am. J. Physiol. 211:1175PubMedGoogle Scholar
  16. Hays, R.M., Franki, N., Soberman, R. 1971. Activation energy for water diffusion across the toad bladder. Evidence against the pore enlargment hypothesis.J. Clin. Invest. 50:1016PubMedGoogle Scholar
  17. Hays, R.M., Leaf, A. 1962. Studies on the movement of water through isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:905PubMedGoogle Scholar
  18. Kachadorian, W.A., Wade, J.B., DiScala, V.A. 1975. Vasopressin: Induced structural change in toad bladder luminal membrane.Science 190:67PubMedGoogle Scholar
  19. Leaf, A., Anderson, J., Page, L.B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 41:657Google Scholar
  20. Leaf, A., Hays, R.M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921PubMedGoogle Scholar
  21. Masters, B.R., Yguerabide, J., Fanestil, D. 1978. Microviscosity of mucosal cellular membranes in toad urinary bladder. Relation to antidiuretic hormone action on water permeability.J. Membrane Biol. 40:179Google Scholar
  22. Pietras, R.J., Wright, E.M. 1975. Non-electrolyte probes of membrane structure in ADH-treated toad urinary bladder.Nature (London) 247:222Google Scholar
  23. Schreiner, G.F., Unanue, E.R. 1976. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction.Adv. Immunol. 24:37PubMedGoogle Scholar
  24. Silverstein, S.C., Steinman, R.M., Cohn, Z.A., 1977. Endocytosis.Annu. Rev. Biochem. 46:669CrossRefPubMedGoogle Scholar
  25. Taylor, A., Mamelak, M., Reaven, E., Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347PubMedGoogle Scholar
  26. Taylor, A., Maffy, R., Wilson, L., Reaven, E. 1975. Evidence for the involvement of microtubules in the action of vasopressin.Ann. N.Y. Acad. Sci. 253:723PubMedGoogle Scholar
  27. Wade, J.B., DiScala, V.A., Karnovksy, M.J. 1975. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. I. The granular cell.J. Membrane Biol. 22:385CrossRefGoogle Scholar
  28. Wade, J.B., Kachadorian, W.A., DiScala, V.A. 1977. Freeze-fracture electron microscopy: Relationship of membrane structural features to transport physiology.Am. J. Physiol. 232:F77Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Barry R. Masters
    • 1
  • Darrell D. Fanestil
    • 1
  1. 1.Division of Nephrology, Department of MedicineUniversity of California, San DiegoLa Jolla

Personalised recommendations