Advertisement

The Journal of Membrane Biology

, Volume 113, Issue 2, pp 155–167 | Cite as

Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: A highly conserved feature of the polarized epithelial cell phenotype

  • Michael P. Lisanti
  • André Le Bivic
  • Alan R. Saltiel
  • Enrique Rodriguez-Boulan
Articles

Summary

We use a sensitive biotin polarity assay to survey the surface distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins in five model epithelial cell lines derived from different species (dog, pig, man) and tissues, i.e., kidney (MDCK I, MDCK II, LLC-PK1) and intestine (Caco-2 and SK-CO15). After biotinylation of apical or basolateral surfaces of confluent monolayers grown on polycarbonate filters, GPI-anchored proteins are identified by their shift from a Triton X-114 detergent-rich phase to a detergent-poor phase in the presence of phosphatidylinositol-specific phospholipase C. All GPI-anchored proteins detected (3–9 per cell type, at least 13 different proteins) are found to be apically polarized; no GPI-anchored protein is observed preferentially localized to the basal surface. One of the GPI-anchored proteins is identified as carcinoembryonic antigen (CEA). Survey of MDCK II-RCA r , a mutant cell line with a pleiotropic defect in galactosylation of glycoproteins and glycolipids (that presumably affects GPI anchors) also reveals an apical polarization of all GPI-anchored proteins. In contrast, analysis of MDCK II-ConA′ (a mutant cell line with an unknown defect in glycosylation) revealed five GPI-anchored proteins, two of which appeared relatively unpolarized. Our results indicate that the polarized apical distribution of GPI-anchored proteins is highly conserved across species and tissue-type and may depend on glycosylation.

Key Words

protein targeting biotin labeling epithelial polarity glycolipids glycosyl-phosphatidylinositol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangs, J.D., Hereld, D., Krakow, J.L., Hart, G.W., Englund, P.T. 1985. Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein.Proc. Natl. Acad. Sci. USA 82:3207–3211Google Scholar
  2. Bensadoun, A., Weinstein, D. 1976. Assay of proteins in the presence of interfering materials.Anal. Biochem. 70:241–251Google Scholar
  3. Birk, H., Koepsell, H. 1987. Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: Renaturation of antigenic sites and reduction of nonspecific antibody binding.Anal. Biochem. 164:12–22Google Scholar
  4. Blobel, G. 1980. Intracellular protein topogenesis.Proc. Natl. Acad. Sci. USA 77:1496–1500Google Scholar
  5. Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution.J. Biol. Chem. 256:1604–1607Google Scholar
  6. Brandli, A.W., Hansson, G.C., Rodriguez-Boulan, E., Simons, K. 1988. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex.J. Biol. Chem. 263:16283–16290Google Scholar
  7. Brown, D.A., Crise, B., Rose, J.K. 1989. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells.Science 245:1499–1501Google Scholar
  8. Brown, D.A., Rose, J.K. 1988. Polarized expression of hybrid proteins in MDCK cells.J. Cell Biol. 107:782aGoogle Scholar
  9. Caplan, M.J., Anderson, H.C., Palade, G.E., Jamieson, J.D. 1986. Intracellular sorting and polarized cell surface delivery of (Na+, K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes.Cell 46:623–631Google Scholar
  10. Chan, B.L., Lisanti, M.P., Rodriguez-Boulan, E., Saltiel, A.R. 1988. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor.Science 241:1670–1672Google Scholar
  11. Chapman, A., Fujimoto, K., Kornfeld, S., 1980. The primary glycosylation defect in class E Thy-1 negative mutant mouse lymphoma cell lines is an ability to synthesize dolichol-p-mannose.J. Biol. Chem. 255:4441–4446Google Scholar
  12. Conzelmann, A., Spiazzi, A., Bron, C. 1987. Glycolipid anchors are attached to Thy-1 glycoprotein rapidly after translation.Biochem. J. 246:605–610Google Scholar
  13. Conzelmann, A., Spiazzi, A., Hyman, R., Bron, C. 1986. Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells.EMBO J. 5:3291–3296Google Scholar
  14. Cross, G.A.M. 1987. Eukaryotic protein modification and membrane attachment via phosphatidylinositol.Cell 48:179–181Google Scholar
  15. Davitz, M.A., Hereld, D., Shak, S., Krakow, J., Englund, P.T., Nussenzweig, V. 1987. A glycan-phosphatidylinositol-specific phospholipase D in human serum.Science 238:81–84Google Scholar
  16. Davitz, M.A., Low, M.G., Nussenzweig, V. 1986. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PI-PLC).J. Exp. Med. 163:1150–1161Google Scholar
  17. Ferguson, M.A.J., Duszenko, M., Lamont, G.S., Overath, P., Cross, G.A.M. 1986. Biosynthesis ofTrypanosoma brucei variant surface glycoproteins.J. Biol. Chem. 261:356–362Google Scholar
  18. Ferguson, M.A.J., Homans, S.W., Dwek, R.A., Rademacher, T.W. 1988. Glycosyl-phosphatidylinositol moiety that anchorsTrypanosoma brucei variant surface glycoprotein to the membrane.Science 239:753–759Google Scholar
  19. Ferguson, M.A.J., Williams, A.F. 1988. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures.Annu. Rev. Biochem. 57:285–320Google Scholar
  20. Fogh, J., Trempe, G. 1975. New human tumor cell lines.In: Human Tumor Cells in vitro, J. Fogh, editor. pp. 115–140. Plenum, New YorkGoogle Scholar
  21. Grab, D.J., Webster, P., Verjee, Y. 1984. The intracellular pathway and assembly of newly formed variable surface glycoprotein ofTrypanosoma brucei.Proc. Natl. Acad. Sci. USA 81:7703–7707Google Scholar
  22. Grasset, E., Pinto, M., Dussaulx, E., Zweibaum, A., Desjeux, J.F. 1984. Epithelial properties of human colonic carcinoma cell line Caco-2: Electrical parameters.Am. J. Physiol. 247:C260–C267Google Scholar
  23. Gstraunthaler, G.J.A. 1988. Epithelial cells in tissue culture.Renal Physiol. Biochem. 11:1–42Google Scholar
  24. Hamada, Y., Yamamura, M., Kohshiro, H., Yamamoto, M., Nagura, H., Watanbe, K. 1985. Immunohistochemical study of carcinoembryonic antigen in patients with colorectal cancer.Cancer 55:136–141Google Scholar
  25. Handler, J.S., Perkins, F.M., Johnson, J.P. 1980. Studies of renal function using cell culture techniques.Am. J. Physiol. 238:F1–F9Google Scholar
  26. Hauri, H.P., Sterchi, E.E., Bienz, D., Fransen, J.A.M., Marxen, A. 1985. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells.J. Cell Biol. 101:838–851Google Scholar
  27. He, H., Finne, J., Goridis, C. 1987. Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule.J. Cell. Biol. 105:2489–2500Google Scholar
  28. Homans, S.W., Ferguson, M.A.J., Dwek, R.A., Rademacher, T.W., Anand, R., Williams, A.F. 1988. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein.Nature (London) 333:269–272Google Scholar
  29. Hull, R.N., Cherry, W.R., Weaver, G.W. 1976. The origin and characteristics of a pig kidney cell strain, LLC-PK.In Vitro 12:670–677Google Scholar
  30. Kollias, G., Evans, D.J., Ritter, M., Beech, J., Morris, R., Grosveld, F. 1987. Ectopic expression of Thy-1 in the kidneys of transgenic mice induces functional and proliferative abnormalities.Cell 51:21–31Google Scholar
  31. Krakow, J.L., Hereld, D., Bangs, J.D., Hart, G.W., Englund, P.T. 1986. Identification of a glycolipid precursor of theTrypanosoma brucei variant surface glycoprotein.J. Biol. Chem. 261:12147–12153Google Scholar
  32. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4.Nature (London) 227:680–685Google Scholar
  33. Le Bivic, A., Real, F., Rodriguez-Boulan, E. 1989. Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line.Proc. Natl. Acad. Sci. USA (in press) Google Scholar
  34. Lisanti, M.P., Caras, I.W., Davitz, M.A., Rodriguez-Boulan, E. 1989. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells.J. Cell Biol. 109:2145–2156Google Scholar
  35. Lisanti, M.P., Sargiacomo, M., Graeve, L., Saltiel, A.R., Rodriguez-Boulan, E. 1988. Polarized apical distribution of glycosyl-phosphatidylinositol anchored proteins in a renal epithelial cell line.Proc. Natl. Acad. Sci. USA 285:9557–9561Google Scholar
  36. Low, M.G., Ferguson, M.A.J., Futterman, A.H., Silman, I. 1986. Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins.Trends Biochem. Sci. 11:212–214Google Scholar
  37. Low, M., Saltiel, A.R. 1988. Structural and functional roles of glycosyl-phosphatidylinositol in membranes.Science 239:268–275Google Scholar
  38. Machamer, C.E., Rose, J.K. 1987. A specific transmembrane domain of a coronavirus El glycoprotein is required for its retention in the Golgi region.J. Cell. Biol. 105:1205–1214Google Scholar
  39. Masterson, W.J., Doering, T.L., Hart, G.W., Englund, P.T. 1989. A novel pathway for glycan assembly: Biosynthesis of the glycosyl-phosphatidylinositol anchor of theTrypanosome variant surface glycoprotein.Cell 56:793–800Google Scholar
  40. Medof, M.E., Walter, E.I., Rutgers, J.L., Knowles, D.M., Nussenzweig, V. 1987. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids.J. Exp. Med. 165:848–864Google Scholar
  41. Meiss, H.K., Green, R.F., Rodriguez-Boulan, E. 1982. Lectin resistant mutants of polarized epithelial cells.Mol. Cell. Biol. 2:1287–1294Google Scholar
  42. Menon, A.K., Mayor, S., Ferguson, M.A.J., Duszenko, M., Cross, G.A.M. 1988. Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor ofTrypanosoma brucei variant surface glycoproteins.J. Biol. Chem. 263:1970–1977Google Scholar
  43. Ojakian, G.K., Romain, R.E., Herz, R.E. 1987. A distal nephron glycoprotein that has different cell surface distributions in MDCK cell sublines.Am. J. Physiol. 253:C433–C443Google Scholar
  44. Pfaller, W., Fischer, W.M., Gstraunthaler, G. 1988. Stereologic analysis of LCC-PK1 differentiation.Pfluegers Arch.411:R83 (abstr.)Google Scholar
  45. Pfeiffer, S.R., Rothman, J.E. 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi.Annu. Rev. Biochem. 56:829–852Google Scholar
  46. Pinto, M., Robine-Leon, S., Appay, M.D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., Zweibaum, A. 1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture.Biol Cell. 47:323–330Google Scholar
  47. Poruchynsky, M.S., Atkinson, P.H. 1988. Primary sequence domains required for the retention of Rotavirus VP7 in the endoplasmic reticulum.J. Cell Biol. 107:1697–1706Google Scholar
  48. Pryde, J.G. 1986. Triton X-114: A detergent that has come in from the cold.Trends Biochem. Sci. 11:160–163Google Scholar
  49. Rabito, C.A., Kreisberg, J.I., Wight, D. 1984. Alkaline phosphatase and gamma-glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane.J. Biol. Chem. 259:574–582Google Scholar
  50. Roberts, W.L., Myher, J.J., Kuksis, A., Low, M.G., Rosenberry, T.L. 1988. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C.J. Biol. Chem. 263:18766–18775Google Scholar
  51. Rodriguez-Boulan, E. 1983. Polarized budding of viruses from epithelial cells.Methods Enzymol. 98:486–501Google Scholar
  52. Rodriguez-Boulan, E., Nelson, W.J. 1989. Morphogenesis of the polarized epithelial cell phenotype.Science 245:718–725Google Scholar
  53. Rodriguez-Boulan, E., Salas, P.J.I. 1989. External and internal signals for surface molecular polarization of epithelial cells.Annu. Rev. Physiol. 51:741–754Google Scholar
  54. Rodriguez-Boulan, E., Salas, P.J., Sargiacomo, M., Lisanti, M., Le Bivic, A., Sambuy, Y., Vega-Salas, D., Graeve, L. 1989. Methods to estimate the polarized distribution of surface antigens in cultured epithelial cells.In: Methods in Cell Biology. A. Tartakoff, editor. pp. 37–56. Academic, New YorkGoogle Scholar
  55. Rousset, M. 1986. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation.Biochimie 68:1035–1040Google Scholar
  56. Sack, T.L., Gum, J.R., Low, M.G., Young, S.K. 1988. Release of carcinoembryonic antigen from human colon cancer cells by a phosphatidylinositol-specific phospholipase C.J. Clin. Invest. 82:586–593Google Scholar
  57. Sargiacomo, M., Lisanti, M.P., Graeve, L., Le, Bivic, A., Rodriguez-Boulan, E. 1989. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells.J. Membrane Biol. 107:277–288Google Scholar
  58. Sly, W. 1982. The uptake and transport of lysosomal enzymes.In: The Glycoconjugates. M.I. Horowitz, editor, Vol. IV. pp. 3–25. Academic, New YorkGoogle Scholar
  59. Takami, N., Misumi, Y., Kuroki, M., Matsuoka, Y., Ikehara, Y. 1988. Evidence for carboyl-terminal processing and glycolipid anchoring of human carcinoembryonic antigen.J. Biol. Chem. 263:12716–12720Google Scholar
  60. Takesue, Y., Yokota, K., Nishi, Y., Taguchi, R., Ikezawa, H. 1986. Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C.FEBS Lett. 201:5–8Google Scholar
  61. Thompson, T.E., Tillack, T.W. 1985. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells.Annu. Rev. Biophys. Biophys. Chem. 14:361–386Google Scholar
  62. Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354Google Scholar
  63. van Meer, G. 1988. How epithelia grease their microvilli.Trends Biochem. Sci. 13:242–243Google Scholar
  64. van Meer, G., Stelzer, F.H.K., Wijnaendts-van Resandt, R.W., Simons, K. 1987. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells.J. Cell Biol. 105:1623–1635Google Scholar
  65. van Meer, G., Simons, K. 1988. Lipid polarity and sorting in epithelial cells.J. Cell Biochem. 36:51–58Google Scholar
  66. Vega-Salas, D.E., Salas, P.J.I., Gundersen, D. Rodriguez-Boulan, E. 1987. Formation of the apical pole of epithelial (MDCK) cells: Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions.J. Cell Biol. 104:905–916Google Scholar
  67. von Bonsdorff, C.-H., Fuller, S., Simons, K. 1985. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown in nitrocellulose filters.EMBO J. 11:2781–2792Google Scholar
  68. Wandinger-Ness, A., Simons, K. 1989. The polarized transport of surface proteins and lipids in epithelial cells.In: Intracellular Trafficking of Proteins. J. Hanover and C. Steer, editors. Cambridge University Press (in press)Google Scholar
  69. Wieland, F.T., Gleason, M.L., Serafini, T.A., Rothman, J.E. 1987. The rate of bulk flow from the endoplasmic reticulum to the cell surface.Cell 50:289–300Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Michael P. Lisanti
    • 1
  • André Le Bivic
    • 1
  • Alan R. Saltiel
    • 2
  • Enrique Rodriguez-Boulan
    • 1
  1. 1.Department of Cell Biology and AnatomyCornell University Medical CollegeNew York
  2. 2.Laboratory of Molecular OncologyRockefeller UniversityNew York

Personalised recommendations