Journal of Biological Physics

, Volume 13, Issue 1, pp 13–24 | Cite as

Structure and dynamic properties of dehydroergosterol, 13-113-113-1

  • Robert T. Fischer
  • Frances A. Stephenson
  • Ali Shafiee
  • Friedhelm Schroeder


Dehydroergosterol has been widely used as a fluorescent analog of cholesterol for the investigation of lipoprotein, model membrane, and biological membrane structure. Although its synthesis was reported over fifty years ago, the complete structure and assignment of the three double bonds in the rings has not heretofore been firmly established. Therefore, dehydroergosterol was synthesized and purified by reverse phase high performance liquid chromatography. The proposed structure (Δ8, 7, 9(11), 22-ergostatetraen-3β-o1), including the location of the double bond at Δ9(11), was confirmed by mass spectroscopy,1H-NMR, and13C-NMR. In addition, a convenient assay for determination of impurities in dehydroergosterol preparations utilizing absorbance peak ratios is described. The spectroscopic properties of dehydroergosterol are highly dependent on solvent dielectric constant. Dehydroergosterol was incorporated into sonicated unilamellar vesicles composed of dimyristoylphosphatidylcholine or distearoylphosphatidylcholine. Arrhenius plots of dehydroergosterol fluorescence polarization indicated that the sterol was sensitive to the phase transitions of these phospholipids near 23° and 54°C, respectively. Differential polarized phase fluorescence and lifetime analysis were used to determine the dynamic properties of dehydroergosterol in the vesicles. At 37°C the limiting anisotropy, order parameter, and rotational rate of dehydroergosterol in dimyristoylphosphatidylcholine were 0.162, 0.65, and 0.71 nsec, respectively. The limiting anisotropy and order parameter, but not the rotational rate, of dehydroergosterol were sensitive to the temperature and/or the physical state of the phospholipid.


High Performance Liquid Chromatography Dielectric Constant Dynamic Property Rotational Rate Arrhenius Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonucci, R.; Bernstein, S.; Giancola, D.; Sax, K.J. 1951.J. Org. Chem. 16, 1159–1164.Google Scholar
  2. Barenholz, Y.; Gibbes, D.; Litman, B.J.; Goll, J.; Thompson, T.E.; Carlson, F.D. 1977.Biochemistry 16, 2806–2810.PubMedGoogle Scholar
  3. Bartlett, G.R. 1959.J. Biol. Chem. 234, 466–468.PubMedGoogle Scholar
  4. Bergeron, R.J.; Scott, J. 1982.J. Lipid Res. 23, 391–404.Google Scholar
  5. Bergmann, W.; Stevens, P.G. 1948.J. Org. Chem. 13, 10–20.Google Scholar
  6. Bligh, E.G.; Dyer, W.J. 1959.Can. J. Biochem. Physiol. 37, 911–917.PubMedGoogle Scholar
  7. Brockerhoff, H. 1974.Lipids 9, 645–650.Google Scholar
  8. Bush, S.F.; Levin, H.; Levin, I.W. 1980.Chem. Phys. Lipids 27, 101–111.Google Scholar
  9. Clejan, S.; Bittman, R.; Deroo, P.W.; Isaacson, Y.A.; Rosenthal, A.F. 1979.Biochemistry 18, 2118–2125.Google Scholar
  10. Darke, A.; Finer, E.G.; Flook, A.G.; Phillips, M.C. 1972.J. Mol. Biol. 63, 265–279.PubMedGoogle Scholar
  11. De Kruyff, B.; Domel, R.A.; Slotboom, A.J.; Van Deenen, L.L.M.; Rosenthal, A.F. 1973.Biochim. Biophys. Acta 307, 1–19.Google Scholar
  12. Eggert, H.; Van Antwerp, C.L.; Bhacca, N.; Djerassi, C. 1976.J. Org. Chem. 41, 71–78.Google Scholar
  13. Fischer, R.T.; Cowlen, M.S.; Shafiee, A; Stephenson, F.A.; Schroeder, F. 1984a.Fed. Proc. 43, 1901a.Google Scholar
  14. Fischer, R.T.; Stephenson, F.A.; Shafiee, A.; Schroeder, F. 1984b.Fed. Proc. 43, 482a.Google Scholar
  15. Fischer, R.T.; Stephenson, F.A.; Shafiee, A.; Schroeder, F. 1984c.Chem. Phys. Lipids, 36, 1–14.Google Scholar
  16. Fischer, R.T.; Cowlen, M.S.; Dempsey, M.E.; Schroeder, F. 1985.Biochemistry, in press.Google Scholar
  17. Gallay, J.; de Kruijff, B.; Demel, R.A. 1984.Biochim. Biophys. Acta 769, 96–104.Google Scholar
  18. Gally, H.U.; Seelig, A.; Seelig, J. 1976.Hoppe-Seyler's Z. Physiol. Chem. 357, 1447–1450.Google Scholar
  19. Hale, J.E.; Schroeder, F. 1982.Eur. J. Biochem. 122, 649–661.Google Scholar
  20. Hemminga, M.A.; Berendsen, H.J.C. 1972.J Magn. Resonance 8, 133–143.Google Scholar
  21. Heyn, M.P. 1979.FEBS Lett. 108, 359–364.Google Scholar
  22. Holland, J.F.; Teets, R.E.; Timnick, A. 1973.Anal. Chem. 45, 145–153.Google Scholar
  23. Jahnig, F. 1979.Proc. Natl. Acad. Sci. USA 76, 6361–6365.Google Scholar
  24. Janiak, M.J.; Small, D.M.; Shipley, G.G. 1976.Biochemistry 15, 4575–4580.PubMedGoogle Scholar
  25. Kandutsch, A.A.; Chen, H.W. 1975.J. Cell Physiol. 85, 415–424.Google Scholar
  26. Kandutsch, A.A.; Shown, E.P. 1981.J. Biol. Chem. 258, 13068–13073.Google Scholar
  27. Kawato, S.; Kinosita, K.; Ikegami, A. 1977.Biochemistry 16, 2319–2324.Google Scholar
  28. Kinosita, K. Jr.; Kataoka, R.; Kimura, Y.; Gotoh, O.; Ikegami, A. 1981.Biochemistry 20, 4270–4277.Google Scholar
  29. Lakowicz, J.R.; Prendergast, F.G.; Hogen, D. 1979a.Biochemistry 18, 508–519.PubMedGoogle Scholar
  30. Lakowicz, J.F.; Prendergast, F.G.; Hogen, D. 1979b.Biochemistry 18, 520–527.Google Scholar
  31. Lakowicz, J.R.; Cherek, H.; Balter, A. 1981.J. Biochem. Biophys. Meth. 5, 131–146.PubMedGoogle Scholar
  32. Morton, R.A.; Heilbron, I.M.; Spring, F.S. 1930.Biochem. J. 24, 136–140.Google Scholar
  33. Oldfield, E.; Chapman, D. 1972.FEBS Lett. 21, 303–306.Google Scholar
  34. Presti, F.T.; Pace, R.J.; Chan, S.I. 1982.Biochemistry 21, 3831–3835.Google Scholar
  35. Reich, H.J.; Jautelat, M.; Messe, M.T.; Weigert, F.J.; Roberts, J.D. 1969.J. Am. Chem. Soc. 91, 7445–7454.Google Scholar
  36. Rogers, J.; Lee, A.G.; Wilton, D.D. 1979.Biochim. Biophys. Acta 552, 23–37.Google Scholar
  37. Rubinstein, I.; Goad, L.J. 1974.Phytochemistry 13, 485–487.Google Scholar
  38. Rubinstein, I.; Goad, L.J.; Clague, A.D.H.; Mulheirn, L.J. 1976.Phytochemistry 15, 195–200.Google Scholar
  39. Ruyle, W.V.; Jacob, T.A.; Chemerda, J.M.; Chamberlin, E.M.; Rosenburg, D.W.; Sita, G.E.; Erickson, R.R.; Aliminosa, L.M.; Tishler, M. 1953.J. Am. Chem. Soc. 75, 2604–2609.Google Scholar
  40. Schreier-Muccillo, S.; Marsh, D.; Dugas, H.; Schneider, H.; Smith, I.C.P. 1973.Chem. Phys. Lipids 10, 11–27.PubMedGoogle Scholar
  41. Schroeder, F. 1981.FEBS Lett. 135, 127–130.Google Scholar
  42. Schroeder, F.; Perlmutter, J.F.; Glaser, M.; Vagelos, P.R. 1976.J. Biol. Chem. 251, 5015–5026.Google Scholar
  43. Schroeder, F.; Goh, E.H.; Heimberg, M. 1979.J. Biol. Chem. 254, 2456–2463.Google Scholar
  44. Schroeder, F.; Gratton, E., Barenholz, Y.; Thompson, T.E. 1984a.Biochemistry, submitted.Google Scholar
  45. Schroeder, F.; Goetz, I.E.; Roberts, E. 1984b.Mech. Ageing Dev. 25, 365–389.Google Scholar
  46. Shinitzky, M.; Inbar, M. 1974.J. Mol. Biol. 85, 603–615.PubMedGoogle Scholar
  47. Shinitzky, M.; Barenholz, Y. 1974.J. Biol. Chem. 249, 2652–2657.PubMedGoogle Scholar
  48. Silvius, J.R.; Read, B.D.; McElhany, R.N. 1979.Biochim. Biophys. Acta 555, 175–178.Google Scholar
  49. Suckling, K.E.; Blair, H.A.F.; Boyd, G.S.; Craig, I.F.; Malcolm, B.R. 1979.Biochim. Biophys. Acta 551, 10–21.PubMedGoogle Scholar
  50. Taylor, M.G.; Akiyama, T.; Saito, H.; Smith, I.C.P. 1982.Chem. Phys. Lipids 31, 359–379.Google Scholar
  51. Theobald, N.; Djerassi, C. 1978.Tetrahedron Lett. 45, 4369–4372.Google Scholar
  52. Tsuda, M.; Schroepfer, G.J., Jr. 1979a.Chem. Phys. Lipids 25, 49–68.Google Scholar
  53. Tsuda, M.; Schroepfer, G.J., Jr. 1979b.J. Org. Chem. 44, 1290–1293.Google Scholar
  54. Vincent, M.; Gallay, J. 1983.Biochem. Biophys. Res. Commun. 113, 799–810.PubMedGoogle Scholar
  55. Weber, G. 1952.Biochem. J. 51, 145–156.Google Scholar
  56. Weber, G. 1978.Acta Phys. Polon. A54, 859–865.Google Scholar
  57. Weber, G.; Bablouzian, B. 1966.J. Biol. Chem. 241, 2558–2561.Google Scholar
  58. Windaus, A.; Linsert, O. 1928.Justus Liegibs Ann. Chem. 465, 148–166.Google Scholar
  59. Yeagle, P.L.; Martin, R.B.; Lula, A.K.; Bloch, K. 1977.Proc. Natl. Acad. Sci. USA 74, 4924–4929.Google Scholar
  60. Yeagle, P.L.; Bensen, J.; Boni, L.; Hui, S.W. 1982a.Biochim. Biophys. Acta 692, 139–146.Google Scholar
  61. Yeagle, P.L.; Bensen, J.; Greco, M.; Arena, C. 1982b.Biochemistry 21, 1249–1254.Google Scholar
  62. Zull, J.E.; Greenoff, S.; Adam, H.K. 1968.Biochemistry 7, 4172–4176.PubMedGoogle Scholar
  63. Zuercher, A.; Heusser, H.; Jeger, O.; Geistlich, P. 1954.Helv. Chim. Acta 37, 1564–1581.Google Scholar

Copyright information

© New Forums Press, Inc. 1985

Authors and Affiliations

  • Robert T. Fischer
    • 1
  • Frances A. Stephenson
    • 2
  • Ali Shafiee
    • 3
  • Friedhelm Schroeder
    • 1
  1. 1.Department of PharmacologyUniversity of Missouri-Columbia School of MedicineColumbia
  2. 2.Department of BiochemistryUniversity of Virginia School of MedicineCharlottesville
  3. 3.Department of ChemistryUniversity of Missouri-ColumbiaColumbia

Personalised recommendations