Skip to main content
Log in

Effects of membrane potential on Na cotransports in eel intestinal brush-border membrane vesicles: Studies with a fluorescent dye

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The Na-dependent transport of a number of organic molecules (d-glucose,l-proline,l-alanine,l-phenylalanine) in brush-border membrane vesicles isolated from the intestine of the eel (Anguilla anguilla) was monitored by recording the fluorescence quenching of the voltage-sensitive cyanine dye 3,3′-diethylthiacarbocyanine iodide (DiS-C2(5)). The experimental approach consisted of: a) generating an inside-negative membrane potential mimicking “in vivo” conditions: b) measuring the rate of membrane potential decay (i.e., the rate of fluorescence quenching decay) due to Na-neutral substrate cotransport. Rates of membrane potential decay showed saturation on substrate concentration andK app values (the substrate concentration giving 50% of the maximal rate) were estimated for Na-dependent transport ofd-glucose (0,099mm),l-alanine (0.516mm),l-proline (0.118mm) andl-phenylalanine (2.04mm). The influence of an inside-negative membrane potential on the affinity of the transporter for glucose and for sodium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albus, H., Lippens, F., Siegenbeek van Heukelom, J. 1983. Sodium-dependent sugar and amino acid transport in isolated goldfish intestinal epithelium: Electrophysiological evidence against direct interactions at the carrier level.Pfluegers Arch. 398:10–17

    Google Scholar 

  2. Bashford, C.L., Smith, S.C. 1979. The use of optical probes to monitor membrane potential.Methods Enzymol. 55:569–586

    Google Scholar 

  3. Beck, J.C., Sacktor, B. 1978. Membrane potential sensitive fluorescence changes during Na-dependentd-glucose transport in renal brush border membrane vesicles.J. Biol. Chem. 253:7158–7162

    Google Scholar 

  4. Bogé, G., Rigal, A., Peres, G. 1982. The use of intestinal brush border membrane vesicles for comparative studies of glucose and 2-amino-isobutyric acid transport by four species of marine teleosts.Comp. Biochem. Physiol. A 72:85–89

    Google Scholar 

  5. Cassano, G., Vilella, S., Zonno, V., Storelli, C. 1986. Na/H exchange activity is not present on the eel intestinal brush border membrane vesicles.In: Ion Gradient-Coupled Transport. F. Alvarado and C. H. Van Os, editors. pp. 282–286. Elsevier Science, Amsterdam

    Google Scholar 

  6. Crane, R.K. 1965. Na-dependent transport in the intestine and other animal tissues.Fed. Proc. 24:1000–1005

    Google Scholar 

  7. Duggleby, R.G. 1981. A nonlinear regression program for small computers.Analyt. Biochem. 110:9–18

    Google Scholar 

  8. Gunther, R.D., Schell, R.E., Wright, E.M. 1984. Ion permeability of rabbit intestinal brush border membrane vesicles.J. Membrane Biol. 78:119–127

    Google Scholar 

  9. Hoffman, J.F., Laris, P.C. 1974. Determination of membrane potentials in human and amphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519–552

    Google Scholar 

  10. Hopfer, U., Nelson, K., Perrotto, I., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25–32

    Google Scholar 

  11. Kaunitz, J.D., Gunther, R., Wright, E.M. 1982. Involvement of multiple sodium ions in intestinald-glucose transport.Proc. Natl. Acad. Sci. USA 79:2315–2318

    Google Scholar 

  12. Kessler, M., Semenza, G. 1983. The small-intestinal Na+,d-glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δψ.J. Membrane Biol. 76:27–56

    Google Scholar 

  13. Kimmich, G.A., Randles, J. 1980. Evidence for an intestinal Na+: sugar transport coupling stoichiometry of 2.0.Biochim. Biophys. Acta 596:439–444

    Google Scholar 

  14. Kimmich, G.A., Randles, J. 1984. Sodium-sugar coupling stoichiometry in chick intestinal cells.Am. J. Physiol. 247:C74-C82

    Google Scholar 

  15. Marquardt, D.W. 1963. An algorithm for least squares estimation of nonlinear parameters.J. Soc. Indust. Appl. Math. 11:431–441

    Google Scholar 

  16. O'Neill, B., Magnolato, D., Semenza, G. 1986. The electrogenic, Na+-dependent I transport system in plasma membrane vesicles from thyroid glands.Biochim. Biophys. Acta 896:263–274

    Google Scholar 

  17. Schell, R.E., Stevens, B.R., Wright, E.M. 1983. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye.J. Physiol. (London) 335:307–318

    Google Scholar 

  18. Segel, I.H. 1975. Multisite and allosteric enzymes.In: Enzyme Kinetics. pp. 346–464. J. Wiley and Sons, New York

    Google Scholar 

  19. Semenza, G., Corcelli, A. 1986. The absorption of sugar and amino acids across the small intestine.In: Molecular and Cellular Basis of Digestion. P. Desnuelle, editor. Chapter 21, pp. 381–412 Elsevier Science, Amsterdam

    Google Scholar 

  20. Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na+,d-glucose cotransporter of the small intestinal brush-border membrane.Biochim. Biophys. Acta 779:343–379

    Google Scholar 

  21. Sims, P.J., Waggoner, A.S., Wang, C.H., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315–3330

    Google Scholar 

  22. Stieger, B., Burckhardt, G., Murer, H. 1983. The application of a potential-sensitive cyanine dye to rat small intestinal vesicles.Biochim. Biophys. Acta 732:324–326

    Google Scholar 

  23. Stieger, B., Burckhardt, G., Murer, H. 1984. Demonstration of sodium-dependent, electrogenic substrate transport in rat small intestinal brush border membrane vesicles by a cyanine dye.Pfluegers Arch. 400:178–182

    Google Scholar 

  24. Storelli, C., Vilella, S., Cassano, G. 1986. Na-dependentd-glucose andl-alanine uptake in brush border membrane vesicles from the eel intestine.Am. J. Physiol. 251:R463-R469

    Google Scholar 

  25. Turner, R.J., Moran, A. 1982. Further studies of proximal tubular brush border membraned-glucose transport heterogeneity.J. Membrane Biol. 70:37–45

    Google Scholar 

  26. Wright, E.M. 1984. Electrophysiology of plasma membrane vesicles.Am. J. Physiol. 246:F363-F372

    Google Scholar 

  27. Wright, S.H., Krasne, S., Kippen, I. Wright, E.M. 1981. Na-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effect of fluorescence of a potential-sensitive cyanine dye.Biochim. Biophys. Acta 640:767–778

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassano, G., Maffia, M., Vilella, S. et al. Effects of membrane potential on Na cotransports in eel intestinal brush-border membrane vesicles: Studies with a fluorescent dye. J. Membrain Biol. 101, 225–236 (1988). https://doi.org/10.1007/BF01872837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872837

Key words

Navigation