Skip to main content
Log in

The “tunneling” mode of biological carrier-mediated transport

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bell, R.P. 1980. The Tunnel Effect in Chemistry. Chapman & Hall, London

    Google Scholar 

  • Benz, R., Tosteson, M.T., Schubert, D. 1984. Formation and properties of tetramenrs of band 3 protein from human erythrocyte membranes in planar lipid bilayers.Biochim. Biophys. Acta 775:347–355

    Google Scholar 

  • Berkowitz, L.R., Orringer, E.P. 1985. Passive sodium and potassium movements in sickle erythrocytes.Am. J. Physiol. 249:C308-C214

    Google Scholar 

  • Brock, C.J., Tanner, M.J.A., Kempf, C. 1983. The human erythrocyte anion-transport protein.Biochem. J. 213:577–586

    Google Scholar 

  • Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of membrae protein evaluated by use of “probes.”Biochim. Biophys. Acta 515:239–302

    Google Scholar 

  • Cass, A., Dalmark, M. 1979. Chloride transport by self-exchange and by KCI salt diffusion in gramicidin-treated human red blood cells.Acta Physiol. Scand. 107:193–203

    Google Scholar 

  • Cuppoletti, J., Goldinger, J., Kang, B., Ho, I., Berenski, C., Jung, C.Y. 1985. Anion carrier in the human erythrocyte exists as a dimer.J. Biol. Chem. 260:1574–15717

    Google Scholar 

  • Devault, D. 1984. Quatum-Mechanical Tunneling in Biological Systems. Cambridge University Press, London

    Google Scholar 

  • Donlon, J.A., Rothstein, A. 1969. The cation permeability of erythrocytes in low ionic strength media of various tonicities.J. Membrane Biol. 1:37–52

    Google Scholar 

  • Freedman, J.C., Miller, C. 1983. Incorporation of membrane vesicles from human red blood cells into planar lipid bilayers: Observations of voltage-dependent, Cl-selective, DIDS-sensitive single channels.Fed. Proc. 42:606 (Abstr.)

    Google Scholar 

  • Freedman, J.C., Novak, T.S. 1987. Chloride conductance of human red blood cells at variedE K Biophys. J. 51:565a (Abstr.)

    Google Scholar 

  • Fröhlich, O. 1982. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride.J. Membrane Biol. 65:111–123

    Google Scholar 

  • Fröhlich, O. 1984a. Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes.J. Gen. Physiol. 84:877–893

    Google Scholar 

  • Fröhlich, O. 1984b. How channel-like is a biological carrier? Studies with the erythrocyte anion transporter.Biophys. J. 45:93–94

    Google Scholar 

  • Fröhlich, O., Bain, D.T., Weimer, L.H. 1986. Effects of phloretin and DNDS on the chloride conductane (tunneling) in erythrocytes.Biophys. J. 49:141a (Abstr.)

    Google Scholar 

  • Fröhlich, O., Gunn, R.B. 1986. Erythrocyte anion transport: The kinetics of a single-site obligatory exchange system.Biochim. Biophys. Acta 864:169–194

    Google Scholar 

  • Fröhlich, O., Gunn, R.B. 1987. Interactions of inhibitors on the anion transporter of the human erythrocyte.Am. J. Physiol. 252:C153-C162

    Google Scholar 

  • Fröhlich, L., Leibson, C., Gunn, R.B. 1983. Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site.J. Gen. Physiol. 81:127–152

    Google Scholar 

  • Funder, J., Tosteson, D.C., Wieth, J.O. 1978. Effects of bicarbonate on lithium transport in human red cells.J. Gen. Physiol. 11:721–746

    Google Scholar 

  • Galvez, L.M., Jennings, M.L., Tosteson, M.T. 1984. Incorporation of the DNDS-binding peptide from the anion transport protein into bilavers.Fed. Proc. 43:315 (Abstr.)

    Google Scholar 

  • Gunn, R.B. 1978. Considerations of the titratable carrier model for sulfate transport in human red blood cells.In: Membrane Transport Processes. Vol. 1. pp. 61–77. Hoffman, J.F., editor. Raven, New York

    Google Scholar 

  • Gunn, R.B., Fröhlich, O. 1979. Asymmetry in the mechanism for anion exchange in human red cell membranes: Evidence for reciprocating sites that react with one transported anio at a time.J. Gen. Physiol. 74:351–374

    Google Scholar 

  • Hautmann, M., Schnell, K.F. 1985. Concentration dependence of chloride selfexchange and homoexchange in human red cell ghosts.Pfluegers Arch. 405:193–201

    Google Scholar 

  • Hunter, M.J. 1971. A quantitative estimate of the non-exchangerestricted chloride permeability of the human red cell.J. Physiol. (London) 218:P49-P50 (Abstr.)

    Google Scholar 

  • Hunter, M.J. 1974. The use of lipid bilayers as cell membrane models: An experimental test using the ionophore, valionmycin.In. Drugs and Transport Processes. B.A. Callingham, editor. pp. 227–240. Macmillan, London

    Google Scholar 

  • Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer.J. Physiol. (London) 268:35–49

    Google Scholar 

  • Jacquez, J.A. 1964. The kinetics of carrier-mediated transport.Biochim. Biophys. Acta 79:318–328

    Google Scholar 

  • Jennings, M.L. 1980. Apparent “recruitment” of SO4 transport sites by the Cl gradient across the human erythrocyte membrane.In: Membrane Transport in Erythrocytes. U.V. Lassen, H.H. Ussing, and J. Wieth, editors. pp. 450–463. Munksgaard, Copenhagen

    Google Scholar 

  • Jennings, M.L. 1982. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes.J. Gen. Physiol. 79:169–185

    Google Scholar 

  • Jennings, M.L. 1984. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein.J. Membrane Biol. 80:105–117

    Google Scholar 

  • Joiner, C.H., Dew, A. 1986. Deoxy cation fluxes in sickle cells are inhibited by 4,4′-diisothiocyanostilbene-2,2′-disulfonate (DIDS).Fed. Proc. 45:466 (Abstr.)

    Google Scholar 

  • Jones, G.S., Knauf, P.A. 1985. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.J. Gen. Physiol. 86:721–738

    Google Scholar 

  • Kaplan, J.H., Passow, H. 1974. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane.J. Membrane Biol. 19:179–194

    Google Scholar 

  • Kaplan, J.H., Pring, M., Passow, H. 1980. Concentration dependence of chloride movements that contribute to the conductance of the red cell membrane.In: Membrane Transport in Erythrocytes. (Alfred Benzon Symposium 14.) U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 494–497 Munksgaard, Copenhagen

    Google Scholar 

  • Kaplan, J.H., Pring, M., Passow, H. 1983. Band-3 protein-mediated anion conductance of the red cell membrane. Slippagevs. ionic diffusion.FEBS Lett. 156:175–179

    Google Scholar 

  • King, P.A., Fröhlich, O., Gunn, R.B. 1986. Phloretin inhibits and activates separate modes of net sulfate transport in red blood cell ghosts.J. Gen. Physiol. 88:32a (Abstr.)

    Google Scholar 

  • Knauf, P.A. 1979. Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure.Curr. Top. Membr. Transp. 12:249–363

    Google Scholar 

  • Knauf, P.A. 1982. Kinetic asymmetry of the red cell anion exchange system.Membr. Transp. 2:441–449

    Google Scholar 

  • Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386

    Google Scholar 

  • Knauf, P.A., Law, F.-Y. 1980. Relationship of net anion flow to the anion exchange system.In: Membrane Transport in Erythrocytes. (Alfred Benzon Symposium 14.) U.V. Lassen, H.H. Ussing, J.O. Wieth, editors. pp. 488–493. Munksgaard, Copenhagen

    Google Scholar 

  • Knauf, P.A., Law, F.Y., Marchant, P.J. 1983a. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism.J. Gen. Physiol. 81:95–126

    Google Scholar 

  • Knauf, P.A., Mann, N.A. 1984. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocytes anion exchange system.Gen. Physiol. 83:703–725

    Google Scholar 

  • Knauf, P.A., Mann, N.A., Kalwas, J.E. 1983b. Net chloride transport across the human erythrocyte membrane into low chloride media: Evidence against a slippage mechanism.Biophys. J. 41:164a (Abstr.)

    Google Scholar 

  • Knauf, P.A., Marchant, P.J. 1977. Dependence of net chloride permeability of human erythrocytes on membrane potential.Biophys. J. 17:165a (Abstr.)

    Google Scholar 

  • La Celle, P.L., Rothstein, A. 1966. The passive permeability of the red blood cell to cations.J. Gen. Physiol. 50:171–188

    Google Scholar 

  • Läuger, P. 1980. Kinetic properties of ion carriers and channels.J. Membrane Biol. 57:163–178

    Google Scholar 

  • Läuger, P. 1985. Channels with multiple conformational states: Interrelation with carriers and pumps.Curr. Top. Membr. Transp. 21:309–326

    Google Scholar 

  • Läuger, P., Stephan, W., Frehland, E. 1980. Fluctuations of barrier structure in ionic channels.Biochim. Biophys. Acta 602:167–180

    Google Scholar 

  • Macara, I.G., Cantley, L.C. 1983. The structure and function of band 3.In: Cell Membranes: Methods and Reviews. Vol. 1 pp. 47–87. E. Elson, W. Frazier, and L. Glaser, editors. Plenum, New York

    Google Scholar 

  • Morel, F.M. 1973. A study of passive potassium efflux from human red blood cells using ion-specific electrodes.J. Membrane Biol. 12:69–88

    Google Scholar 

  • Passow, H. 1986. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane.Rev. Physiol. Biochem. Pharmacol. 103:61–223

    Google Scholar 

  • Passow, H., Fasold, H., Gärtner, M., Legrum, B., Ruffig, W., Zaki, L. 1980. Mediation of anon transport across the red blood cell membrane by means of conformational changes of the band 3 protein.In: Membrane Transport in Erthrocytes. (Alfred Benzon Symposium 14.) U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 345–367. Munksgaard, Copenhagen

    Google Scholar 

  • Patlak, C.C. 1957. Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency and measurement of energy expenditure.Bull. Math. Biophys. 19:209–235

    Google Scholar 

  • Sarai, A., DeVault, D. 1986. Proton tunneling.Meth. Enzymol. 127:79–91

    Google Scholar 

  • Schwarz, W., Passow, H. 1986. The H2DIDS-sensitive anionnet flux in human erythrocytes is mediated by anion-selective pores.Proc. XXXth Congr. Int. Union Physiol. Sci.,16:544 (Abstr. # P517, 12)

    Google Scholar 

  • Tanford, C. 1985. Simple model can explain self-inhibition of red cell anion exchange.Biophys. J. 47:15–20

    Google Scholar 

  • Tosteson, D.C. 1959. Halide transport in red blood cells.Acta Physiol. Scand. 46:19–41

    Google Scholar 

  • Tosteson, D.C., Carlsen, E., Dunham, E.T. 1952. The effects of sickling on ion transport.J. Clin. Inverst. 31:406–411

    Google Scholar 

  • Vestergaard-Bogind, B., Lassen, U.V. 1974. Membrane potential ofAmphiuna red cells: Hyperpolarizing effect of phloretin.In: Comparative Biochemistry and Physiology of Transport. L. Bolis, K. Bloch, S.E. Luria, and F. Lynen, editors. pp. 346–353. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Wieth, J.O., Bjerrum, P.J., Anderson, O.S. 1982. The anion transport protein of the red cell membrane: A zipper mechanism of anion exchange.Tokai J. Exp. Clin. Med. 7:91–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, O. The “tunneling” mode of biological carrier-mediated transport. J. Membrain Biol. 101, 189–198 (1988). https://doi.org/10.1007/BF01872834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872834

Key Words

Navigation