Skip to main content
Log in

Thiol-dependent K∶Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The sulfhydryl (SH) oxidant diamide activated in a concentration-dependent manner ouabain-resistant (OR), Cl-dependent K flux in both low potassium (LK) and high potassium (HK) sheep red cells as determined from the rate of zero-trans K efflux into media with Cl or Cl replaced by NO3 or methane sulfonate (CH3SO3). Diamide did not alter the OR Na efflux into choline Cl. The diamide effect on K efflux appeared after 80% of cellular glutathione (GSH) was oxidized to GSSG, its disulfide. The stimulation of K efflux was completely reversed during metabolic restitution of GSH, a process that depended on the length of exposure to and the concentration of diamide. The action of diamide on both the K∶Cl transporter and GSH was also fully reversed by the reducing agent dithiothreitol (DTT). Diamide apparently oxidized the same SH groups alkylated by N-ethylmaleimide (NEM) (Lauf, P.K. 1983.J. Membrane Biol..73:237–246). Like NEM, diamide activated K∶Cl transport several-fold more in LK cells than in HK cells, and the effect on LK cells was partially inhibited by anti-L1, the allo-antibody known to inhibit OR K fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, J., Lauf, P.K. 1981. Thiol-dependent passive K/Cl transport in sheep red cells: III. Differential reactivity of membrane SH groups with N-ethylmaleimide and iodoacetamide.J. Membrane Biol. 73:257–261

    Google Scholar 

  2. Bergmann, W.L., Dressler, V., Haest, C.W.M., Deuticke, B. 1984. Cross-linking of SH-groups in the erythrocyte membrane enhances transbilayer reorientation of phospholipids: Evidence for a limited access of phospholipids to the reorientation sites.Biochim. Biophys. Acta 769:390–398

    Google Scholar 

  3. Beutler, E. 1971. Red Cell Metabolism. pp. 103–105. Grune & Stratton. New York-London

    Google Scholar 

  4. Deuticke, B. 1987. The role of membrane sulfhydryls in passive, mediated transport processes and for the barrier function of the erythrocyte membrane.Membrane Biochem. 6:309–316

    Google Scholar 

  5. Deuticke, B., Poser, B., Lütkemeier, P., Haest, C.W.M. 1983. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide.Biochim. Biophys. Acta 731:196–210

    Google Scholar 

  6. Dressler, V., Haest, C.W.M., Plasa, G., Deuticke, B., Erusalimsky, J.D. 1984. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.Biochim. Biophys. Acta 775:189–196

    Google Scholar 

  7. Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol (London) 318:511–530

    Google Scholar 

  8. Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chlorideactivated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715

    Google Scholar 

  9. Ellory, J.C., Dunham, P.B. 1980. Volume-dependent passive potassium transport in LK sheep red cells.In: Membrane Transport in Erythrocytes. Alfred Benzon Symposium, 14. U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 409–423, Munksgaard, Copenhagen

    Google Scholar 

  10. Fischer, T.M., Haest, C.W.M., Stohr, M., Kamp, D., Deuticke, B. 1978. Selective alteration of erythrocyte deformability by SH reagents.Biochim. Biophys. Acta 510: 270–282

    Google Scholar 

  11. Fisher, T.J., Tucker, E.M., Young, J.D. 1986. Relationship between cell age, glutathione and cation concentration in sheep erythrocytes with a normal and a defective transport system for amino acids.Biochim. Biophys. Acta 884:211–214

    Google Scholar 

  12. Franck, P.F.H., Opden Kamp, J.A.F., Roelofsen, B., Deenen, L.L.M. van 1986. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry?Biochim. Biophys. Acta 857:127–130

    Google Scholar 

  13. Fujise, H., Lauf, P.K. 1987. Swelling, NEM, and A23187 activate Cl-dependent K+ transport in high-K sheep red cells.Am. J. Physiol. 252:C195-C204

    Google Scholar 

  14. Garcia-Sancho, J., Sanchez, A., Herreros, B. 1979. Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane.Biochim. Biophys. Acta 556:118–130

    Google Scholar 

  15. Haest, C.W.M., Plasa, G., Kamp, D., Deuticke, B. 1978. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.Biochim. Biophys. Acta 509:21–32

    Google Scholar 

  16. Jung, D.W., Brierly, G.P. 1982. The redox state of pyridine nucleotides controls permeability of uncoupled mitochondria to K+ Biochem. Biophys. Res. Commun. 106:1372–1377

    Google Scholar 

  17. Kaji, D. 1986. Volume-sensitive K transport in human erythrocytes.J. Gen. Physiol. 88:719–738

    Google Scholar 

  18. Kaji, D., Kahn, T. 1985. Kinetics of Cl-dependent K influx in human erythrocytes with and without external Na: Effect of NEM.Am. J. Physiol. 249:C490-C496

    Google Scholar 

  19. Kosower, N.S., Kosower, E.M., Wertheim, B. 1969. Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide.Biochem. Biophys. Res. Commun. 37:593–596

    Google Scholar 

  20. Kosower, N.S., Zipser, Y., Faltin, Z. 1982. Membrane thioldisulfide status in glucose-6-phosphate dehydrogenase deficient red cells.Biochim. Biophys. Acta 691:345–352

    Google Scholar 

  21. Kramhoft, B., Lambert, I.H., Hoffmann, E.K., Jorgensen, F. 1986. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells.Am. J. Physiol. 251:C369-C379

    Google Scholar 

  22. Lauf, P.K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external K+[Rb+] ions.J. Membrane Biol. 73:237–246

    Google Scholar 

  23. Lauf, P.K. 1983. Thiol-dependent passive K/Cl transport in sheep red blood cells: V. Dependence on metabolism.Am. J. Physiol. 245:C445-C448

    Google Scholar 

  24. Lauf, P.K. 1984. Thiol-dependent passive K+Cl transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes.J. Membrane Biol. 82:167–178

    Google Scholar 

  25. Lauf, P.K. 1985. On the relationship between volume- and thiol-stimulated K+Cl fluxes in red cell membranes.Mol. Physiol. 8:215–234

    Google Scholar 

  26. Lauf, P.K. 1985. Passive K+Cl fluxes in low K+ sheep erythrocytes: Modulation by A23187 and bivalent cations.Am. J. Physiol. 249:C271-C278

    Google Scholar 

  27. Lauf, P.K. 1985. K+:Cl cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13

    Google Scholar 

  28. Lauf, P.K. 1987. Thiol-dependent passive K/Cl transport in sheep red cells: VII. Volume-independent freezing by iodoacetamide and sulfhydryl group heterogeneity.J. Membrane Biol. 98:237–246

    Google Scholar 

  29. Lauf, P.K., Adragna, J.C., Garay, R.P. 1984. Activation by N-ethylmaleimide of a latent K+−Cl flux in human red blood cells.Am. J. Physiol. 246:C385-C390

    Google Scholar 

  30. Lauf, P.K., Perkins, C.M., Adragna, N.C. 1985. Cell volume and metabolic dependence of the N-ethylmaleimide activated K+Cl flux in human red cells.Am. J. Physiol. 249:C124-C128

    Google Scholar 

  31. Lauf, P.K., Theg, B.E. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes.Biochem. Biophys. Res. Commun. 92:1422–1428

    Google Scholar 

  32. Logue, P., Anderson, C., Kanik, C., Farquharson, B., Dunham, P.B. 1983. Passive potassium transport in LK sheep red cells. Modification by N-ethylmaleimide.J. Gen. Physiol. 81:861–885

    Google Scholar 

  33. Mannervik, B., Eriksson, S.A. 1974. Enzymatic reduction of mixed dissulfides and thiosulfate esters.In: Glutathione. L. Flohe et al., editors. pp. 120–132. Academic Press. New York, and G. Thieme, Stuttgart

    Google Scholar 

  34. Meister, A. 1983. Selective modification of glutathione metabolism.Science 220:471–477

    Google Scholar 

  35. Robillard, G.T., Konings, W.N. 1983. A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes.Eur. J. Biochem. 127:597–604

    Google Scholar 

  36. Thornhill, W.G., Laris, P.C. 1984. KCl loss and cell shrinkage in the Ehrlich ascites tumor cell induced by hypotonic media, 2-deoxyglucose and propranolol.Biochim. Biophys. Acta 773:207–218

    Google Scholar 

  37. Tosteson, D.C., Hoffman, J.F. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells.J. Gen. Physiol. 44:169–194

    Google Scholar 

  38. Tucker, E.M., Kilgour, L. 1970. An inherited glutathione deficiency and a concomitant reduction in potassium concentration in sheep red cells.Experientia 26:203–204

    Google Scholar 

  39. Wiater, L.A., Dunham, P.B. 1983. Passive transport of K+ and Na+ in human red blood cells: Sulfhydryl binding agents and furosemide.Am. J. Physiol. 245:C348-C356

    Google Scholar 

  40. Zade-Oppen, A.M.M., Lauf, P.K. 1987. Interior and exterior pH sensitivity of ouabain-resistant potassium (K+) transport in low K sheep red blood cells.J. Gen. Physiol. 90:44a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauf, P.K. Thiol-dependent K∶Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide. J. Membrain Biol. 101, 179–188 (1988). https://doi.org/10.1007/BF01872833

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872833

Key Words

Navigation