The Journal of Membrane Biology

, Volume 101, Issue 1, pp 151–163 | Cite as

Water transport parameters and regulatory processes inEremosphaera viridis

  • N. Frey
  • K. -H. Büchner
  • U. Zimmermann
Article

Summary

The water relations parameters and the osmoregulatory response ofEremosphaera viridis were investigated both by using the pressure probe technique and by analyzing the intracellular pool of osmotically active agents. In the presence of various concentrations of different salts a biphasic osmoregulatory response was recorded, consisting of a rapid decrease in turgor pressure due to water loss followed by an increase in turgor pressure to the original turgor pressure value (depending on the salt). The values of turgor pressure, volumetric elastic modulus and hydraulic conductivity depended on the composition of the media. Nonelectrolytes did not cause a turgor recovery after the initial water efflux. The second phase of turgor regulation in the presence of salts was characterised by the intracellular accumulation of ions and sugars and required at least 24 hr. Analysis of the cell sap showed that the increase in the internal osmotic pressure was mainly achieved by accumulation of sucrose. Additionally, accumulation of glucose was observed in illuminated cells in the presence of Rb and K. Electron micrographs suggested that the sucrose was produced by degradation of starch granules. Turgor pressure recovery after salt stress seemed to be dependent on temperature and is well correlated with the according photosynthetic activity. The data suggest that a temperature-dependent enzyme which is activated by potassium or rubidium is involved in the regulatory response.

Key Words

Eremosphaera viridis water transport parameters osmoregulation salt stress sugar accumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, W.M., Wendt, B., Zimmermann, U., Korenstein, R. 1985. Rotation of a single swollen thylakoid vesicle in a rotating electric field. Electrical properties of the photosynthesic membrane and their modification by ionophores, lipophilic ions and pH.Biochim. Biophys. Acta 813:117–131Google Scholar
  2. Ben Amotz, A. 1974. Osmoregulation mechanism in the halophilic algaDunaliella parva.In: Membrane transport in plants. U. Zimmermann and J. Dainty, editors. pp. 95–100. Springer-Verlag, BerlinGoogle Scholar
  3. Benz, R. 1978. Alkali ion transport through lipid bilayer membranes mediated by enniatin A and B and beauvericin.J. Membrane Biol. 43:367–394Google Scholar
  4. Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171–191Google Scholar
  5. Bisson, M.A., Kirst, G.O. 1980.Lamprothamnium, a euryhaline charophyte: I. Osmotic relations and membrane potential at steady state.J. Exp. Bot. 31:1223–1235Google Scholar
  6. Büchner, K.-H., Zimmermann, U. 1982. Water relations of immobilized giant algal cells.Planta 154:318–325Google Scholar
  7. Dainty, J. 1963. Water relations of plant cells.Adv. Bot. Res. 1:279–328Google Scholar
  8. Dainty, J. 1976. Water relations of plant cells.In Encyclopedia of Plant Physiology, N. S. Vol. 2, Part A: Transport in Plants II. U. Lüttge and M.G. Pitman, editors. pp. 12–35. Springer-Verlag, BerlinGoogle Scholar
  9. Flowers, T.J., Troke, P.F., Yeo, A.R. 1977. The mechanism of salt tolerance in halophytes.Annu. Rev. Plant Physiol. 28:89–121Google Scholar
  10. Gerdenitsch, W. 1979. Microscopic contributions to the pressure volume diagram of the cell water relations as demonstrated with single cells ofEremosphaera viridis and cell filaments ofSpirogyra spp.Protoplasma 99:79–98Google Scholar
  11. Gutknecht, J., Hastings, D.F., Bisson, M.A. 1978. Ion transport and turgor pressure regulation in giant algal cells.In: Membrane Transport in Biology. Vol. 3, pp. 128–174. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors, Springer-Verlag, New YorkGoogle Scholar
  12. Hellebust, J.A. 1976. Osmoregulation.Annu. Rev. Plant Physiol. 27:485–505Google Scholar
  13. Hüsken, D., Steudle, E., Zimmermann, U. 1978. Pressure probe technique for measuring water relations of higher plants.Plant Physiol. 61:158–163Google Scholar
  14. Kauss, H. 1967. Metabolism of isofloridoside (O-α-d-galactopyranosyl-(II)-glycerol) and osmotic balance in fresh water algaeOchromonas.Nature (London) 214:1129–1130Google Scholar
  15. Kauss, H. 1973. Turn over of galactosylglycerol and osmotic balance inOchromonas.Plant Physiol. 52:613–615Google Scholar
  16. Kauss, H. 1977. Osmotic regulation in algae.Prog. Phytochem. 5:1–27Google Scholar
  17. Kirst, G.O. 1985. Osmotische Adaptation bei Algen.Naturwissenschaften.72:125–132Google Scholar
  18. Kiyosawa, K., Tazawa, M. 1977. Hydraulic conductivity of tonoplast-freeChara cells.J. Membrane Biol. 37:157–166Google Scholar
  19. Lange, B., Vejdelek, Z.J. 1980. Photometrische Analyse. Weinheim, Verlag Chemie, Deerfield Beach (Florida), BaselGoogle Scholar
  20. Levitt, J. 1972. Responses of Plants to Environmental Stresses. Academic Press, New YorkGoogle Scholar
  21. Müller, W., Wegmann, K. 1978. Sucrose biosynthesis inDunaliella: I. Thermic and osmotic regulation.Planta 141:155–158Google Scholar
  22. Munns, R., Greenway, H., Setter, T.L., Kuo, J. 1983. Turgor pressure, volumetric elastic modulus, osmotic volume and ultrastructure ofChlorella emersonii grown at high and low external NaCl.J. Exp. Bot. 34:144–166Google Scholar
  23. Nusch, E.A., Palme, G. 1975. Biologische Methoden für die Praxis der Gewässeruntersuchung.Gas- Wasserfach 116:562–565Google Scholar
  24. Philip, J.R. 1958. Osmosis and diffusion in tissues: Half-times and internal gradients.Plant Physiol 33:275–278Google Scholar
  25. Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron opaque-stain in electron microscopy.J. Cell Biol. 17:208–212Google Scholar
  26. Schefczik, K., Simonis W., Schiebe, M. 1983. Continuous registration of membrane input resistances of small plant cells using a double-pulse current clamp technique for single-electrode impalements. Comparison with the conventional two-electrode method.Plant Physiol. 72:368–375Google Scholar
  27. Schlösser, U.G. 1982. Sammlung von Algenkulturen.Ber. Dtsch. Bot. Ges. 95:181–276Google Scholar
  28. Smith, R.L., Bold, H.C. 1966. Physiological studies: VI. Investigations of the algal generaEremosphaera andOocystis. University of Texas Pub. 6612, AustinGoogle Scholar
  29. Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruc. Res. 26:31–43Google Scholar
  30. Steudle E. 1980. Effect of cell diameter and length on the overall elasticity of cylindrical plant cells. Significance for membrane transport and growth.In: Plant Membrane Transport. R. W. Spanswick, R. W. Lucas, and J. Dainty, editors. pp. 91–112. Elsevier/North-Holland, AmsterdamGoogle Scholar
  31. Steudle, E., Zimmermann, U. 1971. Hydraulische Leitfähigkeit vonValonia utricularis.Z. Naturforsch 26b:1302–1311Google Scholar
  32. Steup, M., Melkonian, M. 1981. α-1,4-glucan-phosphosphorylase EC-2.4.1.1. forms in the green algaEremosphaera viridis.Physiol. Plant. 51:343–348Google Scholar
  33. Tazawa, M. 1961. Weitere Untersuchungen zur Osmoregulation der Nitella-Zelle.Protoplasma 53:227–258Google Scholar
  34. Wendler, S., Zimmermann, U. 1985. Determination of the hydraulic conductivity ofLamprothamnium by use of the pressure clamp.Planta 164:241–245Google Scholar
  35. Wyn-Jones, R.G. 1984. Phytochemical aspects of osmotic adaptation.Rec. Adv. Phytochem. 18:55–78Google Scholar
  36. Zimmermann, U. 1978. Physics of turgor- and osmoregulation.Annu. Rev. Plant Physiol. 29:121–148Google Scholar
  37. Zimmermann, U., Büchner, K.-H., Benz, R. 1981. Transport properties of mobile charges in algal membranes: Influence of pH on turgor pressure.J. Membrane Biol. 67:183–197Google Scholar
  38. Zimmermann, U., Hüsken, D. 1979. Theoretical and experimental exclusion of errors in the determination of the elasticity and water transport parameters of plant cells by the pressure probe technique.Plant Physiol. 64:18–24Google Scholar
  39. Zimmermann, U., Räde, H., Steudle, E. 1969. Kontinuierliche Druckmessung in Pflanzenzellen.Naturwissenschaften 56:634Google Scholar
  40. Zimmermann, U., Steudle, E. 1974. The pressure-dependence of the hydraulic conductivity the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis.J. Membrane Biol 16:331–352Google Scholar
  41. Zimmermann, U., Steudle, E. 1978. Physical aspects of water relations of plant cells.Adv. Bot. Res. 6:45–117Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • N. Frey
    • 1
  • K. -H. Büchner
    • 1
  • U. Zimmermann
    • 1
  1. 1.Lehrstuhl für Biotechnologie der UniversitätWürzburgFederal Republic of Germany

Personalised recommendations