Skip to main content
Log in

Calmodulin Acts as an intermediary for the effects of calcium on gap junctions from crayfish lateral axons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Lateral axons from the abdominal nerve cord of cray-fish were internally perfused with the calcium receptor calmodulin (CaM) in solutions with low (pCa>7.0) or high (pCa 5.5) calcium concentrations and studied electrophysiologically and morphologically. Results from these experiments show that when the internal solution contains calcium-activated calmodulin (Ca2+-CaM) the junctional resistance between the axons increases from control values of about 60 to 500–600 kΩ in 60 min. In contrast, axons perfused with calmodulin in low calcium solutions maintain their junctional resistance at control levels during the 60-min perfusion. Similar results are obtained when only one or both coupled axons are perfused.

The morphological study shows that in the perfused axons the axoplasmic organelles are replaced or grossly perturbed by the perfusion solution up to the region of the synapses. Additionally, in axons perfused with Ca2+-CaM there are regions where the synaptic gap between the membranes decreases from a control 4–6 to 2–3 nm. Both electrophysiological and morphological results can be interpreted as indicating that calcium-activated calmodulin acts directly on the junctional channels to induce their closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arellano, R.O., Ramón, F., Rivera, A., Zampighi, G.A. 1986. Lowering of pH does not directly affect the junctional resistance of crayfish lateral axons.J. Membrane Biol. 94:293–299

    Google Scholar 

  • Brostrom, C.O., Wolff, D.J. 1976. Calcium-dependent cyclic nucleotide phosphodiesterase from brain: Comparison of adenosine 3′,5′-monophosphate and guanosine 3′–5′-monophosphate as sustrates.Arch. Biochem. Biophys. 172:301–311

    Google Scholar 

  • Campos de Carvalho, A., Spray, D.C., Bennett, M.V.L. 1984. pH dependence of transmission at electronic synapses of the crayfish septate axons.Brain Res. 321:279–286

    Google Scholar 

  • Cheung, W.Y. 1980. Calmodulin plays a pivotal role in cellular regulation.Science 207:19–27

    Google Scholar 

  • DeMello, W.C. 1984. Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells.Biophys. Res. Commun. 119:1001–1007

    Google Scholar 

  • Flagg-Newton, J.L., Dahl, G., Loewenstein, W.R. 1981. Cell junction and cyclic AMP: I. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor.J. Membrane Biol. 63:105–121.

    Google Scholar 

  • Girsch, S.J., Peracchia, C. 1985. Lens cell-to-cell channel protein. I. Self-assembly into liposomes and permeability regulation by calmodulin.J. Membrane Biol. 83:217–225

    Google Scholar 

  • Haiech, J., Deracourt, J., Pechère, J.F., Demaille, J.G. 1979. Magnesium and calcium binding to parvalbumins: Evidence for differences between parvalbumin and an explanation of their relaxing function.Biochemistry 18:2752–2758

    Google Scholar 

  • Haiech, J., Klee, C.B., Demaille, J.G. 1981. Effects of cations on affinity of calmodulin for calcium: Ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes.Biochemistry 20:3890–3897

    Google Scholar 

  • Hama, K. 1961. Some observations on the fine structure of the crayfishes (Cambarus virilis andCambarus clarkii) with special reference to the submicroscopic organization of the synapase.Anat. Rec. 141:275–293

    Google Scholar 

  • Hax, W.M.A., Venrooij, G.E.P.M. van, Vossenberg, J.B.J. 1974. Cell communication: A cyclic-AMP mediated phenomenon.J. Membrane Biol. 19:253–266

    Google Scholar 

  • Hertzberg, E.L., Gilula, N.B. 1981. Liver gap junctions and lens fiber junctions: Comparative analysis and calmodulin interactions.Cold Spring Harbor Symp. Quant. Biol. 46:639–645

    Google Scholar 

  • Johnston, M.F., Ramón, F. 1981. Electrotonic coupling in internally perfused crayfish segmented axons.J. Physiol. (London) 317:509–518

    Google Scholar 

  • Johnston, M.F., Simon, S.A., Ramón, F. 1980. Interaction of anesthetics with electrical synapses.Nature (London) 286:498–500

    Google Scholar 

  • Keller, H.C., Bradley, B.O., LaPorte, D.C., Storm, D.R. 1982. Determination of the free-energy coupling for binding of calcium ions and troponin I to calmodulin.Biochemistry 21:156–162

    Google Scholar 

  • Lasater, E.M., Dowling, J.E. 1985. Electrical coupling between pairs of isolated fish horizontal cells is modulated by dopamine and cAMP.In: Gap Junctions. M.V.L. Bennett and D.C. Spray, editors. pp 393–404. Cold Spring Harbor Lab., New York

    Google Scholar 

  • Loewenstein, W.R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441–472

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication. The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    Google Scholar 

  • Moreno, A.P., Ramón, F., Spray, D.C. 1987a Variation of gap junction sensitivity to H-ions with time of day.Brain Res. 400:181–184

    Google Scholar 

  • Pappas, G.D., Asada, Y., Bennett, M.V.L. 1971. Morphological correlates of increased coupling resistance at an electrotonic synapse.J. Cell Biol. 49:173–188

    Google Scholar 

  • Peracchia, C. 1973a. Low resistance junctions in crayfish: I. Two arrays of globules in junctional membranes.J. Cell Biol. 57:54–65

    Google Scholar 

  • Peracchia, C. 1973b. Low resistance junctions in crayfish: II. Structural details and further evidence of intercellular channels by freeze-fracture and negative staining.J. Cell Biol. 57, 66–76

    Google Scholar 

  • Peracchia, C. 1987. Calmodulin-like proteins and communicating junctions: Electrical uncoupling of crayfish septate axons is inhibited by the calmodulin inhibitor W7 and is not affected by cyclic nucleotides.Pfleugers Arch 408:379–385

    Google Scholar 

  • Peracchia, C., Bernardini, G. 1984. Gap junction structure and cell-to-cell coupling regulation. Is there a calmodulin involvement?Fed. Proc. 43:2681–2691

    Google Scholar 

  • Peracchia, C., Dulhunty, A. 1976. Low resistance junctions in crayfish. Structural changes with functional uncoupling.J. Cell Biol. 70:419–439

    Google Scholar 

  • Peracchia, C., Girsch, S.J. 1985. Functional modulation of cell coupling: Evidence for a calmodulin-driven channel gate.Am. J. Physiol. 248:H765-H782

    Google Scholar 

  • Piccolino, M., Neyton, J., Gerschenfeld, H.M. 1984. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′–5′-monophosphate in hozizontal cells of turtle retina.J. Neurophysiol. 4:2477–2488

    Google Scholar 

  • Ramón, F., Rivera, A. 1986. Gap junction channel modulation. A physiological viewpoint.Prog. Biophys. Molec. Biol. 48:127–153

    Google Scholar 

  • Saez, J.C., Spray, D.C., Nairn, A.C., Hertzberg, E., Greengard, P., Bennett, M.V.L. 1986. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide.Proc. Natl. Acad. Sci. USA 83:2473–2477

    Google Scholar 

  • Spray, D.C., Bennett, M.V.L. 1985. Physiology and pharmacology of gap junctions.Annu. Rev. Physiol. 47:281–303

    Google Scholar 

  • Steiner, R.F., Lambooy, P.K., Sternberg, H. 1983. The dependence of the molecular dynamics of calmodulin upon pH and ionic strength.Arch. Biochem. Biophys. 222:158–169

    Google Scholar 

  • Tasaki, I., Singer, I., Takenaka, T. 1965. Effects of internal and external ionic environment on excitability of squid giant axons. A macromolecular approach.J. Gen. Physiol. 48:1095–1123

    Google Scholar 

  • Tsien, R., Rink, T.J. 1980. Neutral carier, ion-selective microelectrodes for measurement of intracellular free calcium.Biochim. Biophys. Acta 599:623–638

    Google Scholar 

  • Turin, L., Warner, A. 1977. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo.Nature (London) 270:56–57

    Google Scholar 

  • Van Eldik, L.J., Hertzberg, E.L., Berdan, R.C., Gilula, N.B. 1985. Interaction of calmodulin and other calcium-modulated proteins with mammalian and arthropod junctional membrane proteins.Biochem. Biophys. Res. Commun. 126:825–832

    Google Scholar 

  • Watanabe, A., Grundfest, H. 1961. Impulse propagation at the septal and commisural junctions of the crayfish lateral giant axons.J. Gen. Physiol. 45:267–308

    Google Scholar 

  • Watterson, D.M., Sharief, F.S., Vanaman, T.C. 1980. The complete amino acid sequence of the Ca++-dependent modulator (calmodulin) of bovine brain.J. Biol. Chem. 255:962–975

    Google Scholar 

  • Welsh, M.J., Aster, J.C., Ireland, M., Alcalá, J., Maisel, J. 1982. Calmodulin binds to chick lens gap junction protein in a calcium-independent manner.Science 216:642–644

    Google Scholar 

  • Zampighi, G.A., Kreman, M., Ramón, F., Moreno, A., Simon, S.A. 1987. Structural characteristics of gap junctions: I. Channel number in coupled and uncoupled conditions.J. Cell Biol. (in press)

  • Zampighi, G.A., Ramón, F., Durán. W. 1978. Fine structure of the electrotonic synapse of the lateral giant axons in a crayfish (Procambarus clarkii),.Tissue Cell 10:413–426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arellano, R.O., Ramón, F., Rivera, A. et al. Calmodulin Acts as an intermediary for the effects of calcium on gap junctions from crayfish lateral axons. J. Membrain Biol. 101, 119–131 (1988). https://doi.org/10.1007/BF01872827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872827

Key Words

Navigation