Skip to main content
Log in

Theoretical basis for a new subnatural spectroscopy via correlation interferometry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new line-narrowing effect in coincidence interferometry yielding subnatural resolution of atomic transition frequencies is proposed and analyzed. The approach utilizes second-order photon correlation properties of the radiation field. This is in contrast to the first-order measurements associated with time delay spectroscopy, which is known to yield subnatural resolution. Connections between the two techniques are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eichmann, U., Bergquist, J. C., Bollinger, J. J., Gilligan, J. M., Itano, W. M., Wineland, D. J. and Raizen, M. G.:Phys. Rev. Lett. 70 (1993), 2359.

    Article  ADS  Google Scholar 

  2. Scully, M. O. and Drühl, K.:Phys. Rev. A 25 (1982), 2208;

    Article  ADS  Google Scholar 

  3. Kwiat, P. G., Steinberg, A. M. and Chiao, R. Y.:Phys. Rev. A 45 (1992), 7729;Phys. Rev. A 49 (1994), 61.

    Article  ADS  Google Scholar 

  4. Gosh, R. and Mandel, L.:Phys. Rev. Lett. 59 (1987), 1903;

    Article  ADS  Google Scholar 

  5. Ou, Z. Y. and Mandel, L.:Phys. Rev. Lett. 61 (1988), 50;Phys. Rev. Lett. 61 (1988), 54;

    Article  ADS  MathSciNet  Google Scholar 

  6. Ou, Z. Y., Wang, L. J. and Mandel, L.:Phys. Rev. A 40 (1989), 1428;

    Article  ADS  Google Scholar 

  7. Ou, Z. Y., Zou, X. Y., Wang, L. J. and Mandel, L.:Phys. Rev. Lett. 65 (1990), 321;

    Article  ADS  Google Scholar 

  8. Zou, X. Y., Grayson, T. P. and Mandel, L.:Phys. Rev. Lett. 69 (1992), 3041.

    Article  ADS  Google Scholar 

  9. Shih, Y. H. and Alley, C. O.:Phys. Rev. Lett. 61 (1988), 2921.

    Article  ADS  Google Scholar 

  10. Horne, M. A., Shimony, A. and Zeilinger, A.:Phys. Rev. Lett. 62 (1989), 2209.

    Article  ADS  Google Scholar 

  11. Franson, J. D.:Phys. Rev. Lett. 62 (1989), 2205;Phys. Rev. A 44 (1991), 4552.

    Article  ADS  Google Scholar 

  12. Kwiat, P. G., Vareka, W. A., Hong, C. K., Nathel, H. and Chiao, R. Y.:Phys. Rev. A 41 (1990), 2910;

    Article  ADS  Google Scholar 

  13. Kwiat, P. G., Steinberg, A. M. and Chiao, R. Y.:Phys. Rev. A 47 (1993), R2472.

    Article  ADS  Google Scholar 

  14. Wu, C. S., Lee, Y. K., Benczer-Koller, N. and Simms, P.:Phys. Rev. Lett. 5 (1960), 432;

    Article  ADS  Google Scholar 

  15. Ma, I.-J., Mertens, J., Zu Putlitz, G. and Schutte, G.:Z. Phys. 208 (1968), 276;

    Article  ADS  Google Scholar 

  16. Zu Putlitz, G.:Comm. Atom. Molec. Phys. 1 (1969), 74;

    Google Scholar 

  17. Copley, G., Kibble, B. P. and Series G. W.:J. Phys. B.: Proc. Phys. Soc., London 1 (1968), 724;

    Article  ADS  Google Scholar 

  18. Figger, H. and Walther, H.:Z. Phys. 267 (1974), 1;

    Article  ADS  Google Scholar 

  19. Hilborn, R. C. and DeZafra, R. L.:J. Opt. Soc. Amer. 62 (1972), 1492;

    Article  ADS  Google Scholar 

  20. Schenck, P., Hilborn, R. C. and Metcalf, H.:Phys. Rev. Lett. 31 (1973), 189;

    Article  ADS  Google Scholar 

  21. Luk, T. S., DiMauro, L., Feldman, M. and Metcalf, H.:Phys. Rev. A 24 (1981), 864.

    Article  ADS  Google Scholar 

  22. Meystre, P., Scully, M. O. and Walther, H.:Opt. Comm. 33 (1980), 153;

    Article  ADS  Google Scholar 

  23. Lee, H.-W., Meystre, P. and Scully, M. O.:Phys. Rev. A 24 (1981), 1914.

    Article  ADS  Google Scholar 

  24. Stenholm, S.: in R. Balian, S. Haroche, and S. Liberman (eds),Frontiers in Laser Spectroscopy, Les Houches XXVII. North-Holland, Amsterdam, 1977.

    Google Scholar 

  25. Another approach to sharpening radiative lines using strong dressing fields was presented by Narducci, L. M., Oppo, G.-L. and Scully, M. O.:Opt. Comm. 75 (1990), 111 and Narducci, L. M., Scully, M. O., Oppo, G.-L., Ru, P. and Tredicce, J. R.:Phys. Rev. A 42 (1990), 1630 and demonstrated by Gauthier, D. J., Zhu, Y. and Mossberg, T. W.:Phys. Rev. Lett. 66 (1991), 2460.

    Article  ADS  Google Scholar 

  26. Lundeen and Pipkin used the separated oscillatory field technique for obtaining subnatural linewidths in measurements of the Lamb shift inH, see Lundeen, S. R. and Pipkin, F. M.:Phys. Rev. Lett. 34 (1975), 1368;Phys. Rev. Lett. 46 (1981), 232.

    Article  ADS  Google Scholar 

  27. Kimble, H. J., Mezzacappa, A. and Milonni, P. W.:Phys. Rev. A 31 (1985), 3686;

    Article  ADS  Google Scholar 

  28. Huang, H. and Eberly, J. H.:J. Modern Opt. 40 (1993), 915;

    Article  ADS  Google Scholar 

  29. Scully, M. O. inProc. 1994 NATO Advanced Study Institute on Advances in Quantum Phenomena (to be published).

  30. Glauber, R. J.: inQuantum Optics and Electronics, Les Houches 1964. Gordon and Breach, New York, 1965.

    Google Scholar 

  31. Scully, M. O., Rathe, U. W., Su, C. and Huang, H.: Line narrowing via correlated spontaneous emission (submitted toPhys. Rev. Lett).

  32. The interference functiong(τ, Δ) modulating the Lorentzian 1/(Δ2 + γ 2α ) in Equation (12) has to be taken into account for this measurement. In this context, the choice of the time delay τ is crucial as seen in Figure 3.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor Julian Schwinger, a role model for us all

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathe, U.W., Scully, M.O. Theoretical basis for a new subnatural spectroscopy via correlation interferometry. Lett Math Phys 34, 297–307 (1995). https://doi.org/10.1007/BF01872783

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872783

Mathematics Subject Classification (1991)

Navigation