Skip to main content
Log in

Chloride conductance of the Amphiuma red cell membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Like most other red cells, the giant erythrocytes ofAmphiuma means possess a system for rapid exchange of chloride across the membrane. Also, there are indications that the net transport of chloride in these cells is slow. The size ofAmphiuma erythrocytes allows direct measurements of membrane potential with microelectrodes. The present work exploits the possibility that such measurements can be used to give a quantitative estimate of the chloride conductance (G Cl) of the Amphiuma red cell membrane. The membrane potential was measured as a function of extracellular chloride concentration (5–120mM), using an impermeant anion (Para-amino-hippurate) as a substitute. Furthermore, the effect of different pH values (6.0–7.2) was studied. For each extracellular chloride concentration the membrane potential was determined at a pH at which hydroxyl, hydrogen, and bicarbonate ions were in electrochemical equilibrium. From these membrane potentials and the corresponding chloride concentrations in the medium (at constant intracellular ion concentrations), theG Cl of the membrane was calculated to be 3.9×10−7 {ie27-1} cm−2. This value is some six orders of magnitude smaller than that calculated from the rate of tracer exchange under equilibrium conditions. The experimental strategy used gives the value for a “partial transference number” which takes into account only ions which arenot in electrochemical equilibrium. Whereas this approach gives a value forG Cl, it does not permit calculation of the overall membrane conductance. From the calculated value ofG Cl it is possible to estimate that the maximal value of the combined conductances of hydroxyl (or proton) and bicarbonate ions is 0.6×10−7 {ie27-2} cm−2. The large discrepancy between the rate of exchange of chloride and its conductance is in agreement with measurements on human and sheep red cells employing the ionophore valinomycin to increase the potassium conductance of the membrane. The results in the present study were, however, obtained without valinomycin and an accompanying assumption of a constant field in the membrane. Therefore, the present measurements give independent support to the above mentioned conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, A.M., Walker, I.L., Sutton, R.B. 1970. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects inAplysia neurons.J. Gen. Physiol. 56:559.

    Google Scholar 

  • Callahan, T.J., Hoffman, J.F. 1976. Membrane potentials in human red blood cells due to proton gradients.Biophys. J. 16:165a

    Google Scholar 

  • Christoffersen, G.R.J. 1973. Chloride conductance and the effect of extracellular calcium concentration on resting neurons in the snail,Helix pomatia.Comp. Biochem. Physiol. 46A:371.

    Google Scholar 

  • Fortes, P.A.G., Hoffman, J.F. 1973. Inhibition of anion permeability in the human red cell by fluorescent probes.In. Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 92. Thieme, Stuttgart.

    Google Scholar 

  • Gunn, R.B., Dalmark, M., Tosteson, D.C., Wieth, J.O. 1973. Characteristics of chloride transport in human red blood cells.J. Gen. Physiol. 61:185.

    Google Scholar 

  • Harris, E.J., Pressman, B.C. 1967. Obligate cation exchanges in red cells.Nature (London) 216:918.

    Google Scholar 

  • Hladky, S.B., Rink, T.J. 1976. Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential.J. Physiol. (London) 263:287.

    Google Scholar 

  • Hoffman, J.F., Laris, P.C. 1974. Determination of membrane potentials in human andAmphiuma red blood cells by means of a fluorscent probe.J. Physiol. (London) 239:519

    Google Scholar 

  • Hoffman, J.F., Lassen, U.V. 1971. Plasma membrane potentials inAmphiuma red cells.Abstr. XXV Int. Congr. Physiol. Sci., Munich

  • Hunter, M.J. 1971. A quantitative estimate of the nonexchange-restricted chloride permeability of the red cell.J. Physiol. (London) 218:49P

    Google Scholar 

  • Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer.J. Physiol. (London) 268:35

    Google Scholar 

  • Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363

    Google Scholar 

  • Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rørth and P. Astrup, editors, p. 291. Munksgaard, Copenhagen

    Google Scholar 

  • Lassen, U.V.. 1977. Electrical potential and conductance of the red cell membrane.In: Membrane Transport in Red Cells. J.C. Ellory, and V.L. Lew, editors. p. 137. Academic Press, London.

    Google Scholar 

  • Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6:269

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1976. Effect of calcium on the membrane potential ofAmphiuma red cells.J. Membrane Biol. 26:51.

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1975. Chloride conductance of theAmphiuma red cell membrane. 5th Intern. Biophysics Congress, Copenhagen.Abstr. P-322

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B., Bengtson, O. 1974. Calcium-related hyperpolarization of theAmphiuma red cell membrane following micropuncture.J. Membrane Biol. 18:125

    Google Scholar 

  • Lassen, U.V., Rasmussen, B.E. 1977. Use of microelectrodes for measurement of membrane potentials.In: Transport across Biological Membranes. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. Springer Verlag, Heidelberg (in press)

    Google Scholar 

  • Luckner, M. 1939. Über die Geschwindigkeit des Austausches der Atemgase im Blut.Pflügers Arch. gesamte Physiol. 241:753.

    Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta. 211:458

    Google Scholar 

  • Scarpa, A., Cecchetto, A., Azzone, G.F. 1970. The mechanism of anion translocation and pH equilibration in erythrocytes.Biochim. Biophys. Acta 219:179

    Google Scholar 

  • Siggaard-Andersen, O. 1974. The Acid-Base Status of the Blood. (4th ed.) p. 45. Munksgaard, Copenhagen

    Google Scholar 

  • Stoner, L.C., Kregenow, F.M. 1976. Chloride fluxes and voltage measurements in single red blood cells.Biophys. J. 16:170a

    Google Scholar 

  • Ting-Beall, H.P., Tosteson, M.T., Gisin, B.F., Tosteson, D.C. 1974. Effect of peptide PV on the ionic permeability of lipid bilayer membranes.J. Gen. Physiol. 63:492

    Google Scholar 

  • Tosteson, D.C., 1959. Halide transport in red cells.Acta Physiol. Scand. 46:19

    Google Scholar 

  • Tosteson, D.C., Gunn, R.B., Wieth, J.O. 1973. Chloride and hydroxyl ion conductance of sheep red cell membrane.In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 62. Thieme, Stuttgart

    Google Scholar 

  • Vestergaard-Bogind, B., Lassen, U.V. 1974. Membrane potential ofAmphiuma red cells: Hyperpolarizing effect of phloretin.In: Comparative Biochemistry and Physiology of Transport. K. Bloch, L. Bolis and S.E. Luria, editors. p. 346. North-Holland, Amsterdam

    Google Scholar 

  • Wieth, J.O., Dalmark, M., Gunn, R.B., Tosteson, D.C. 1973. The transfer of monovalent inorganic anions through the red cell membrane.In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 71. Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassen, U.V., Pape, L. & Vestergaard-Bogind, B. Chloride conductance of the Amphiuma red cell membrane. J. Membrain Biol. 39, 27–48 (1978). https://doi.org/10.1007/BF01872753

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872753

Keywords

Navigation