The Journal of Membrane Biology

, Volume 122, Issue 1, pp 89–95 | Cite as

Cl channels in basolateral renal medullary membrane vesicles: IV. Analogous channel activation by Cl or cAMP-dependent protein kinase

  • Christopher J. Winters
  • W. Brian Reeves
  • Thomas E. Andreoli
Articles

Summary

We examined the interactions of cAMP-dependent protein kinase and varying aqueous Cl concentrations in modulating the activity of Cl channels obtained by fusing basolaterally enriched renal outer medullary vesicles into planar lipid bilayers. Under the present experimental conditions, thecis andtrans solutions face the extracellular and intracellular aspects of these Cl channels, respectively. Raising thetrans Cl concentration from 2 to 50mm increased the channel open-time probability, raised the unit channel conductance, and affected the voltage-independent determinant (ΔG) of channel activity but not the gating charge (Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990.J. Membrane Biol.118:269–278). With 2mmtrans KCl,trans addition of the catalytic subunit of PKA (C-PKA) plus ATP increased channel open-time probability and altered the voltage-independent determinant of channel activity without affecting either unit channel conductance or gating charge. The effect was ATP specific, did not occur with (C-PKA plus ATP) addition tocis solutions, and was abolished by denaturing C-PKA. Finally, (C-PKA plus ATP) activation of channel activity was not detected with relatively high (50mm)trans Cl concentrations. These data indicate that (C-PKA plus ATP) might modulate Cl channel activity by phosphorylation at or near the Cl-sensitive site on the intracellular face of these channels.

Key Words

Cl channels/bilayers Cl channels vesicles thick ascending limb channel conductance cAMP-dependent protein kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayliss, J.M., Reeves, W.B., Andreoli, T.E. 1990. Cl transport in basolateral renal medullary vesicles: I. Cl transport in intact vesicles.J. Membrane Biol. 113:49–56Google Scholar
  2. 2.
    Burnham, C., Karlish, S.J.D., Jorgensen, P.L. 1985. Identification and reconstitution of a Na+/K+/Cl cotransporter and K+ channel from luninal membranes of renal red outer medulla.Biochim. Biophys. Acta 821:461–469Google Scholar
  3. 3.
    Geck, P., Pfeiffer, B. 1985. Na+, K+, 2Cl cotransport in animal cells—its role in volume regulation.Ann. NY Acad. Sci. 456:166–182Google Scholar
  4. 4.
    Greger, R., Oberleithner, H., Schlatter, E., Cassola, A.C., Weidtke, C. 1983. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney.Pfluegers Arch. 399:29–34Google Scholar
  5. 5.
    Halm, D.R., Rechkemmer, G.R., Schoumacher, R.A., Frizzell, R.A. 1988. Apical membrane chloride channels in a colonic cell line activated by secretory agonists.Am. J. Physiol. 254:C505-C511Google Scholar
  6. 6.
    Hebert, S.C., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl absorption.J. Membrane Biol. 80:221–233Google Scholar
  7. 7.
    Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport.Am. J. Physiol. 241:F412-F431Google Scholar
  8. 8.
    Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl co-transport: origin of transepithelial voltage.Am. J. Physiol. 241:F432-F442Google Scholar
  9. 9.
    Hebert, S.C., Friedman, P.A., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductance pathways.J. Membrane Biol. 80:201–219Google Scholar
  10. 10.
    Kinne, R., Kinne-Saffran, E., Scholermann, B., Schultz, H. 1986. The anion specificity of the sodium-potassium-chloride cotransporter in rabbit kidney outer medulla: Studies on medullary plasma membranes.Pfluegers Arch. 407:S168-S173Google Scholar
  11. 11.
    Li, M., McCann, J.D., Liedtke, C.M., Nairn, A.C., Greengard, P., Welsh, M.J. 1988. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium.Nature 331:358–360Google Scholar
  12. 12.
    Mandel, K.G., Dharmsathaphorn, K., McRoberts, J.A. 1986. Characterization of a cyclic-AMP-activated potassium transport in a human colonic epithelial cell line.J. Biol. Chem. 261:704–712Google Scholar
  13. 13.
    Molony, D.A., Reeves, W.B., Hebert, S.C., Andreoli, T.E.. 1987. ADH increases apical Na+,K+,2Cl entry in mouse medullary thick ascending limbs of Henle.Am. J. Physiol. 252:F177-F187.Google Scholar
  14. 14.
    Paulais, M., Teulon, J. 1990. cAMP-activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney.J. Membrane Biol. 113:253–260Google Scholar
  15. 15.
    Reeves, W.B., Andreoli, T.E. 1990. Cl transport in basolateral renal medullary vesicles: II. Cl channels in planar lipid bilayers.J. Membrane Biol. 113:57–65Google Scholar
  16. 16.
    Reeves, W.B., McDonald, G.A., Mehta, P., Andreoli, T.E. 1989. Activation of K+ channels in renal medullary vesicles by cAMP-dependent protein kinase.J. Membrane Biol. 109:65–72Google Scholar
  17. 17.
    Reimann, E.M., Beham, R.A. 1983. Catalytic subunit of cAMP-dependent protein kinase.Methods Enzymol. 99:51–55Google Scholar
  18. 18.
    Schlatter, E., Greger, R. 1985. cAMP increases the basolateral Cl conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse.Pfluegers Arch. 405:367–376Google Scholar
  19. 19.
    Schlender, K.K., Reiman, E.R. 1977. Glycogen synthase kinases.J. Biol. Chem. 252:2384–2389Google Scholar
  20. 20.
    Schoumacher, R.A., Shoemaker, R.L., Halm, D.R., Tallant, E.A., Wallace, R.W., Frizzell, R.A. 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells.Nature 330:752–754Google Scholar
  21. 21.
    Valdivia, H.H., Dubinsky, W.P., Coronado, R. 1988. Reconstitution and phosphorylation of chloride channels from airway epithelium membranes.Science 242:1441–1444Google Scholar
  22. 22.
    Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990. cAMP-dependent protein kinase (PKA) and Cl independently activate intracellular faces of Cl channels in basolateral medullary vesicles.J. Am. Soc. Nephrol. 1:695Google Scholar
  23. 23.
    Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990. Cl channels in basolateral renal medullary membranes. III. Determinants of single-channel activity.J. Membrane Biol. 118:269–278Google Scholar
  24. 24.
    Wittner, M., deStefano, A., Wangemann, P., Nitschke, R., Greger, R., Bailly, C., Amiel, C., Roinel, N., deRouffignac, C. 1988. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron.Pfluegers Arch. 412:516–523Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Christopher J. Winters
    • 1
    • 2
  • W. Brian Reeves
    • 1
    • 2
  • Thomas E. Andreoli
    • 1
    • 2
  1. 1.Division of Nephrology, Department of Internal MedicineUniversity of Arkansas 72205, College of MedicineLittle Rock
  2. 2.John L. McClellan Veterans Administration HospitalLittle Rock

Personalised recommendations