Skip to main content
Log in

Osmotic effects of protein polymerization: Analysis of volume changes in sickle cell anemia red cells following deoxy-hemoglobin S polymerization

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Polymerization-depolymerization of proteins within cells and subcellular organelles may have powerful osmotic effects. As a model to study these we analyzed the predicted volume changes following hemoglobin (Hb) S polymerization in sickle cell anemia (SS) red cells with different initial volumes. The theoretical analysis predicted that dehydrated SS red cells may sustain large polymerization-induced volume shifts whose direction would depend on whether or not small solutes were excluded from polymer-associated water. Experiments with SS cells from promptly fractionated venous blood showed oxygenation-induced swelling, maximal in the densest cells, in support of nonexclusion models. The predicted extent of cell dehydration on polymerization was strongly influenced by factors such as the dilution of residual soluble Hb and the increased osmotic contribution of Hb in cells dehydrated by salt loss, largely overlooked in the past. The osmotic effects of polymer formation may thus play an important part in microcirculatory infarction by dense SS cells, as they become even denser and stiffer during deoxygenation in the capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adair, G.S. 1928. A theory of partial osmotic pressures and membrane equilibria with special reference to the application of Dalton's law to hemoglobin solutions in the presence of salts.Proc. R. Soc. London B 120:573–603

    Google Scholar 

  2. Adair, G.S. 1929. Thermodynamic analysis of the observed osmotic pressures of protein salts in solutions of finite concentration.Proc. R. Soc. London A 126:16–24

    Google Scholar 

  3. Adair, G.S., Adair, M.E. 1936. The densities of protein crystals and the hydration of proteins.Proc. R. Soc. London B 120:422–446

    Google Scholar 

  4. Bookchin, R.M., Balazs, T., Lew, V.L. 1990. Sickling-induced cell volume shifts depend on the composition of the polymer water compartment and on polymer hemoglobin concentration. Cp. estimated with improved precision.Blood 76:55a

    Google Scholar 

  5. Boockchin, R.M., Lew V.L. 1981. Effect of a ‘sickling pulse’ on calcium and potassium transport in sickle cell trait red cells.J. Physiol. 312:265–280

    Google Scholar 

  6. Bookchin, R.M., Ortiz, O.E., Freeman, C.J., Lew, V.L. 1989. Predictions and tests of a new integrated reticulocyte model: Implications for dehydration of sickle cells.In: The Red Cell. Proceedings of the Seventh International Conference on Red Cell Metabolism and Function. G.J. Brewer, editor. Alan R. Liss, New York

    Google Scholar 

  7. Bookchin, R.M., Ortiz, O.E., Lew, V.L. 1986. Red Cell calcium transport and mechanisms of dehydration in sickle cell anemia.In: Approaches to the Therapy of Sickle Cell Anaemia. Y. Beuzard, S. Charache, and F. Galacteros. editors. pp. 291–299, INSERM, Paris

    Google Scholar 

  8. Bookchin, R.M., Oritz, O.E., Lew, V.L. 1990. Mechanisms of red cell dehydration in sickle cell anemia. Application of an integrated red cell model.In: The Red Cell Membrane: A Model for Solute Transport. B. U. Raess and G.Tunnicliffe. editors. pp. 443–461. Humana, Clifton (NJ)

    Google Scholar 

  9. Bunn, H.F., Forget, B.G. 1986. Hemoglobin: Molecular. Genetic and Clinical Aspects, W. B. Saunders. Philadelphia

    Google Scholar 

  10. Bureau, M., Banerjee, R. 1976. Structure-volume relationships in hemoglobin. A densitometric and dilatormetric study of the oxy leads to deoxy transformation.Biochimie 58:403–407

    Google Scholar 

  11. Dick, D.A.T. 1959. Osmotic properties of living cells.Int. Rev. Cytol. 8:387–448

    Google Scholar 

  12. Dick, D.A.T., Lowenstein, L.M. 1958.Osmotic equilibria in human erythrocytes studied by immersion refractometry.Proc. R. Soc. London B 148:241–256

    Google Scholar 

  13. Eaton, W.A., Hofrichter, J. 1990. Sickle cell hemoglobin polymerization.Adv. Protein Chem. 40:63–279

    Google Scholar 

  14. Eisinger, J., Flores, J., Bookchin, R.M. 1984. The cytosolmembrane interface of normal and sickle erythrocytes: Effect of hemoglobin deoxygenation and sickling.J. Biol. Chem. 259:7169–7177

    Google Scholar 

  15. Fabry, M.E., Nagel, R.L. 1982. The effect of deoxygenation on red cell density: Significance for the pathophysiology of sickle cell anemia.Blood 60:1370–1377

    Google Scholar 

  16. Fales, F.W. 1978 Water distribution in blood during sickling of erythrocytes.Blood 51:703–709

    Google Scholar 

  17. Freedman, J.C., Hoffman, J.F. 1979. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol. 74:157–185

    Google Scholar 

  18. Freeman, C.J., Bookchin, R.M., Ortiz, O.E., Lew V.L. 1987. K-permeabilized human red cells lose an alkaline, hypertonic fluid containing excess K over diffusible anions.J. Membrane Biol. 96:235–241

    Google Scholar 

  19. Frieden, C. 1989. The regulation of protein polymerization.Trends Biochem. Sci. 14:283–286

    Google Scholar 

  20. Hirschfelder, J.O., Curtiss, C.F., Bird, R. B. 1967. Molecular Theory of Gases and Liquids. John Wiley & Sons, New York

    Google Scholar 

  21. Hladky, S.B., Rink, T.J. 1978. Osmotic behaviour of human red blood cells: An interpretation in terms of negative intracellular fluid pressure.J. Physiol. 274:437–446

    Google Scholar 

  22. Kahn, P.C. Briehl, R.W. 1982. The absence of volume change in the gelation of hemoglobin-S.J. Biol. Chem. 257:12209–12213

    Google Scholar 

  23. Levine, A.S., Shehata, T.E., Murayama, M. 1975. Volume changes upon deoxygenation of sickle red blood cells and other hemoglobin variants.Fed. Proc. 35:152 (Abstr.)

    Google Scholar 

  24. Lew, V.L., Bookchin, R.M. 1986. Volume. pH and-ion content regulation in human red cells: Analysis of transient behavior with an integrated model.J. Membrane Biol. 92:57–74

    Google Scholar 

  25. Lew, V.L., Ferreira, H.G., Moura, T. 1979. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model.Proc. R. Soc. London B 206:53–83

    Google Scholar 

  26. Lew, V.L., Freeman, C.J., Ortiz, O.E., Bookchin, R.M. 1991. A mathematical model on the volume, pH and ion content regulation of reticulocytes. Application to the pathophyhsiology of sickle cell dehydration.J. Clin. Invest. 87:100–112

    Google Scholar 

  27. Masys, D.R., Bromberg, P.A., Balcerzak, S.P. 1974. Red cells shrink during sickling.Blood 44:885–889

    Google Scholar 

  28. McConaghey, P.D., Maizels, M. 1961. The osmotic coefficients of haemoglobin in red cells under varying conditions.J. Physiol. 155:28–45

    Google Scholar 

  29. Noguchi, C.T., Schechter, A.N. 1985. Sickle hemoglobin polymerization in solution and in cells.Annu. Rev. Biophys. Biophys. Chem. 14:239–263

    Google Scholar 

  30. Noguchi, C.T., Torchia, D.A., Schechter, A.N. 1980. Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation.Proc. Natl. Acad. Sci. USA 77:5487–5491

    Google Scholar 

  31. Noguchi, C.T., Torchia, D.A., Schechter, A.N. 1983. Intracellular polymerization of sickle hemoglobin: Effects of cell heterogeneity.J. Clin. Invest. 72:846–852

    Google Scholar 

  32. Perutz, M.F., Mitchison, J.M. 1950. State of haemoglobin in sickle cell anaemia.Nature 166:677–679

    Google Scholar 

  33. Prouty, M.S., Schechter, A.N., Parsegian, V.A. 1985. Chemical potential measurements of deoxyhemoglobin S polymerization. Determination of the phase diagram of an assembling protein.J. Mol. Biol. 184:517–528

    Google Scholar 

  34. Ross, P.D., Briehl, R.W., Minton, A.P. 1978. Temperature dependence of non-ideality in concentrated solutions of hemoglobin.Biopolymers 17:2285–2288

    Google Scholar 

  35. Ross, P.D., Hofrichter, J., Eaton, W.A. 1977. Thermodynamics of gelation of sickle cell deoxyhemoglobin.J. Mol. Biol. 115:111–134

    Google Scholar 

  36. Ross, P.D., Minton, A.P. 1977. Analysis of non-ideal behavior in concentrated hemoglobin solutions.J. Mol. Biol. 112:437–452

    Google Scholar 

  37. Savitz, D., Sidel, V.W., Solomon, A.K. 1964. Osmotic properties of human red cells.J. Gen. Physiol. 48:79–94

    Google Scholar 

  38. Solomon, A.K., Toon, M.R., Dix, J.A. 1986. Osmotic properties of human red cells.J. Membrane Biol. 91:259–273

    Google Scholar 

  39. Sunshine, H.R., Hofrichter, J., Eaton, W.A. 1979. Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins.J. Mol. Biol. 133:435–467

    Google Scholar 

  40. Sunshine, H.R., Hofrichter, J., Ferrone, F.A., Eaton, W.A. 1982. Oxygen binding by sickle cell hemoglobin polymers.J. Mol. Biol. 158:251–273

    Google Scholar 

  41. Tosteson, D.C. 1955. The effects of sickling on ion transport. II. The effect of sickling on sodium and cesium transport.J. Gen. Physiol. 39:55–67

    Google Scholar 

  42. Tosteson, D.C., Carlsen, E., Dunham, E.T. 1955. The effects of sickling on ion transport. I. Effect of sickling on potassium transport.J. Gen. Physiol. 39:31–53

    Google Scholar 

  43. Whitaker, M., Zimmerberg, J. 1987. Inhibition of secretory granule discharge during exocytosis in sea urchin eggs by polymer solutions.J. Physiol. 389:527–539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, V.L., Bookchin, R.M. Osmotic effects of protein polymerization: Analysis of volume changes in sickle cell anemia red cells following deoxy-hemoglobin S polymerization. J. Membrain Biol. 122, 55–67 (1991). https://doi.org/10.1007/BF01872739

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872739

Key Words

Navigation