Skip to main content
Log in

Very low osmotic water permeability and membrane fluidity in isolated toad bladder granules

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Osmotic water permeability of the apical membrane of toad urinary epithelium is increased greatly by vasopressin (VP) and is associated with exocytic addition of granules and aggrephores at the apical surface. To determine the physiological role of granule exocytosis, we measured the osmotic water permeability and membrane fluidity of isolated granules, surface membranes and microsomes prepared from toad bladder in the presence and absence of VP.P f was measured by stopped-flow light scattering and membrane fluidity was examined by diphenylhexatriene (DPH) fluorescence anisotropy. In response to a 75mm inward sucrose gradient, granule size decreased with a single exponential time constant of 2.3±0.1 sec (sem, seven preparations, 23°C), corresponding to aP f of 5×10−4 cm/sec; the activation energy (E a ) forP f was 17.6±0.8 kcal/mole. Under the same conditions, the volume of surface membrane vesicles decreased biexponentially with time constants of 0.13 and 1.9 sec; the fast component comprised ≈ 70% of the signal. Granule, surface membrane and microsome time constants were unaffected by VP. However, in surface membranes, there was a small decrease (6±2%) in the fraction of surface membranes with fast time constant. DPH anisotropies were 0.253 (granules), 0.224 (surface membrane fluidity is remarkably lower than that of surface and microsomal membranes, and (4) rapid water transport occurs in surface membrane vesicles. The unique physical properties of the granule suggests that apical exocytic addition of granule membrane may be responsible for the low water permeability of the unstimulated apical membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution.J. Biol. Chem. 256:1604–1607

    PubMed  Google Scholar 

  • Bricker, T.M., Sherman, L.A. 1984. Triton X-114 phase fractionation of membrane proteins of the cyanobacterium Anactys Nidullans R2.Arch. Biochem. Biophys. 235:204–211

    PubMed  Google Scholar 

  • Brown, D., Montesano, R., Orci, L. 1981. Stretch induces granule exocytosis in toad urinary bladder.Cell. Biol. Int. Rep. 5:275–285

    PubMed  Google Scholar 

  • Carpi-Medina, P., Gonzalez, E., Whittembury, G. 1983. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules.Am. J. Physiol. 244:F554-F563

    PubMed  Google Scholar 

  • Carruthers, A., Melchior, D.L. 1983. Studies of the relationship between bilayer water permeability and bilayer physical state.Biochemistry 22:5797–5807

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79–91

    Google Scholar 

  • Fettiplace, R., Haydon, D.A. 1980. Water permeability of lipid membranes.Physiol. Rev. 60:510–550

    PubMed  Google Scholar 

  • Finkelstein, A. 1987. Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. Distinguished Lecture Series of the Society of General Physiologists. Volume 4. John Wiley and Sons, New York

    Google Scholar 

  • Finkelstein, A., Cass, A. 1967. Effect of cholesterol on the water permeability of thin lipid membranes.Nature (London) 216:717–718

    Google Scholar 

  • Gronowicz, G., Masur, S.K., Holtzman, E. 1980. Quantitative analysis of exocytosis and endocytosis in the hydroosmotic response of toad bladder.J. Membrane Biol. 52:221–235

    Google Scholar 

  • Harris, H.W., Jr., Murphy, H.R., Willingham, M.C., Handler, J.S. 1987. Isolation and characterization of specialized regions of toad urinary bladder apical plasma membrane involved in the water permeability response to antidiuretic hormone.J. Membrane Biol. 96:175–186

    Google Scholar 

  • Hicks, R.M., Ketterer, B., Warren, R.C. 1974. The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder: A structure with low permeability to water and ions.Philos. Trans. R. Soc. London B 268:23–38

    Google Scholar 

  • Heeswijk, M.P.E. van, Os, C.H., van 1986 Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine.J. Membrane Biol. 92:183–193

    Google Scholar 

  • Hise, M.K., Mantulin, W.W., Weinman, E.J. 1984. Fluidity and composition of brush border and basolateral membranes from rat kidney.Am. J. Physiol. 247:F434-F439

    Google Scholar 

  • Illsley, N.P., Lin, H.Y., Verkman, A.S. 1988. Lipid domain structure correlated with membrane protein function in placental microvillus vesicles.Biochemistry 26:446–457

    Google Scholar 

  • Illsley, N.P., Lin, H.Y., Verkman, A.S. 1988. Lipid phase structure in epithelial cell membranes: Comparison of renal brush border and basolateral membranes.Biochemistry 27:2077–2083

    PubMed  Google Scholar 

  • Illsley, N.P., Verkman, A.S. 1986. Serial permeability barriers to water transport in human placental vesicles.J. Membrane Biol.94:267–278

    Google Scholar 

  • Illsley, N.P., Verkman, A.S. 1988. Phase modulation analysis of fluorophore rotational heterogeneity in synthetic and biological membranes.Biophys. J. 53:489a

    PubMed  Google Scholar 

  • Jain, M.K., Touissaint, D.G., Cordes, E.H. 1973. Kinetics of water penetration into unsonicated liposomes. Effects ofn-alkanols and cholesterol.J. Membrane Biol. 14:1–16

    Google Scholar 

  • Kuwahara, M., Berry, C.A., Verkman, A.S. 1988. Rapid onset of vasopressin-induced hydroosmosis in perfused collecting tubule measured by a new fluorescence technique.Biophys. J. (in press)

  • Lakowicz, J.R., Prendergast, F.G. 1978. Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized fluorometry.Science 200:1399–1401

    PubMed  Google Scholar 

  • Lawaczeck, R. 1984. Water permeability through biological membranes by isotopic effects of fluorescence and light scattering.Biophys. J. 45:491–494

    PubMed  Google Scholar 

  • LeGrimellec, C., Giocondi, M.C., Carriere, B., Carriere, S., Cardinal, J. 1982. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney.Am. J. Physiol. 242:F246-F253

    Google Scholar 

  • Levine, S.D., Kachadorian, W.A. 1981. Barriers to water flow in vasopressin-treated toad urinary bladder.J. Membrane Biol. 61:135–139

    Google Scholar 

  • Macey, R.I. 1984. Transport of water and urea in red blood cells.Am. J. Physiol. 246:C195-C203

    Google Scholar 

  • Maizel, J.V. 1971. Polyacrylamide gel electrophoresis of viral proteins.Methods Virol. 5:179–246

    Google Scholar 

  • Masur, S.K., Cooper, S., Massardo, S., Gronowicz, G., Rubin, M.S. 1986. Isolation and characterization of granules of toad bladder.J. Membrane Biol. 89:39–51

    Google Scholar 

  • Masur, S.K., Greunberg, J., Howell, K.E. 1987. Endosomal compartment of toad bladder epithelium.Am. J. Physiol. 252:C115-C120

    Google Scholar 

  • Masur, S.K., Holtzman, E., Schwartz, I.L., Walter, R. 1971. Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine-3′, 5′-cyclic monophosphate.J. Cell Biol. 49:582–589

    PubMed  Google Scholar 

  • Masur, S.K., Holtzman, E., Walter, R. 1972. Hormone stimulated exocytosis in the toad urinary bladder.J. Cell Biol. 52:211–219

    PubMed  Google Scholar 

  • Masur, S.K., Sapirstein, V., Rivero, D. 1985. Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in toad urinary bladder.Biochim. Biophys. Acta 821:286–296

    PubMed  Google Scholar 

  • Merril, C.R., Goldman, D., VanKeuren, M.L. 1984. Gel protein stains: Silver stain.Meth. Enzymol. 104:441–447

    PubMed  Google Scholar 

  • Meyer, M.M., Verkman, A.S. 1986. Human platet osmotic water and non-electrolyte transport.Am. J. Physiol. 250:C549-C557

    Google Scholar 

  • Meyer, M.M., Verkman, A.S. 1987. Evidence for water channels in renal proximal tubule cell membranes.J. Membrane Biol. 96:107–119

    Google Scholar 

  • Minsky, B.D., Chalpowski, R.J. 1978. Morphometric analysis of the translocation of lumenal membrane between cytoplasmic and cell surface of transitional epithelial cells during the expansion-contraction cycle of mammalian urinary bladder.J. Cell Biol. 77:685–697

    PubMed  Google Scholar 

  • Muller, J.W., Kachadorian, W.A., DiScala, V.A. 1980. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells.J. Cell Biol. 85:83–95

    PubMed  Google Scholar 

  • Terwilliger, T.C., Solomon, A.K. 1981. Osmotic permeability of human red cells.J. Gen. Physiol. 77:549–570

    PubMed  Google Scholar 

  • Verkman, A.S., Dix, J.A., Seifter, J.L. 1985. Water and urea transport in renal microvillus membrane vesicles.Am. J. Physiol. 248:F650-F655

    PubMed  Google Scholar 

  • Verkman, A.S., Ives, H.E. 1986. Water transport and fluidity in renal basolateral membranes.Am. J. Physiol. 250:F633-F643

    PubMed  Google Scholar 

  • Verkman, A.S., Lencer, W., Brown, D., Ausiello, D.A. 1988. Endosomes from kidney collecting tubule contain the vasopressin-sensitive water channel.Nature (London) 333:268–269

    Google Scholar 

  • Wade, J.B., McCusker, C., Coleman, R.A. 1986. Evaluation of granule exocytosis in toad urinary bladder.Am. J. Physiol. 251:C380-C386

    Google Scholar 

  • Welling, L.W., Welling, D.J., Ochs, T.J. 1983. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule.Am. J. Physiol. 245:F123-F129

    Google Scholar 

  • Wong, K.R., Verkman, A.S. 1987. Nuclear magnetic resonance measurement of diffusional water permeability in human platelets.Am. J. Physiol. 252:C618-C622

    PubMed  Google Scholar 

  • Worman, H.J., Brasitus, T.A., Dudeja, P.K., Fozzard, H.A., Field, M. 1986. Relationship between lipid fluidity and water permeability of bovine tracheal epithelial cell apical membranes.Biochemistry 25:1549–1555

    PubMed  Google Scholar 

  • Worman, H.J., Field, M. 1985. Osmotic water permeability of small intestinal brush-border membranes.J. Membrane Biol. 87:233–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkman, A.S., Masur, S.K. Very low osmotic water permeability and membrane fluidity in isolated toad bladder granules. J. Membrain Biol. 104, 241–251 (1988). https://doi.org/10.1007/BF01872326

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872326

Key Words

Navigation