Skip to main content
Log in

Effects of variation of ion and methylation of carrier on the rate constants of macrotetralide-mediated ion transport in lipid bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of methylation on the rate constants of carrier-mediated ion transport have been studied on monooleindecane bilayers with K+, Rb+, NH +4 , and TI+ ions, using the series of homologue carriers, nonactin, monactin, dinactin, trinactin, and tetranactin, each member of the series differing from the previous one by only one methyl group. Measurements of the amplitude and time constant of the current relaxation after a voltage jump over a large domain of voltage and permeant ion concentration, together with a computer curve-fitting procedure, have allowed us, without the help of steady-state current-voltage data, to deduce and compare the values of the various rate constants for ion transport: formation (k Ri) and dissociation (k Di) of the ion-carrier complex at the interface, translocation across the membrane interior of the carrier (k s) and the complex (k is). With the additional information from steady-state low-voltage conductance measurements, we have obtained the value of the aqueous phase-membrane and torus-membrane partition coefficient of the carrier ({ie191-1} and {ie191-2}). From nonactin to tetranactin with the NH +4 ion,k is, and {ie191-3} are found to increase by factors of 5 and 3, respectively,k Di and {ie191-4} to decrease respectively by factors 8 and 2, whilek Ri andk s are practically invariant. Nearly identical results are found for K+, Rb+, and Tl+ ions.k Ri,k s andk is are quite invariant from one ion to the other except for Tl+ wherek Ri is about five times larger. On the other hand,k Di depends strongly on the ion, indicating that dissociation is the determining step of the ionic selectivity of a given carrier. The systematic variations in the values of the rate constants with increasing methylation are interpreted in terms of modifications of energy barriers induced by the carrier increasing size. Within this framework, we have been able to establish and verify a fundamental relationship between the variations ofk is andk Di with methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, R. 1978. Alkali ion transport through lipid bilayer membranes mediated by enniatin A and B and beauvericin.J. Membrane Biol. 43:367–394

    Google Scholar 

  • Benz, R., Frölich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers formed from monolayers.Biochim. Biophys. Acta 394:323–334

    Google Scholar 

  • Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171–191

    Google Scholar 

  • Benz, R., Stark, G. 1975. Kinetics of macrotetralide-induced ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 382:27–40

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339–364

    Google Scholar 

  • Ciani, S.M., Eisenman, G., Laprade, R., Szabo, G. 1973a. Theoretical analysis of carrier-mediated electrical properties of bilayer membranes.In: Membranes — A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 61–177. Marcel Dekker, New York

    Google Scholar 

  • Ciani, S., Laprade, R., Eisenman, G., Szabo, G. 1973b. Theory for carrier-mediated zero-current conductance of bilayers extended to allow for nonequilibrium of interfacial reactions, spatially dependent mobilities and barrier shape.J. Membrane Biol. 11:255–292

    Google Scholar 

  • Eisenman, G., Ciani, S.M., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289–1304

    Google Scholar 

  • Eisenman, G., Ciani, S., Szabo, G. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.J. Membrane Biol. 1:294–345

    Google Scholar 

  • Eisenman, G., Szabo, G., Ciani, S., McLaughlin, S.G.A., Krasne, S. 1973. Ion binding and ion transport produced by lipid soluble molecules.Prog. Surf. Membr. Sci. 6:139–241

    Google Scholar 

  • Feldberg, S.W., Kissel, G. 1975. Charge pule studies of transport phenomena in bilayer membranes: I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.J. Membrane Biol. 20:269–300

    Google Scholar 

  • Fettiplace, R., Andrews D.M., Haydon, D.A. 1971. The thickness, composition, and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277–296

    Google Scholar 

  • Gambale, F., Gliozzi, A., Robello, M. 1973. Determination of rate constants in carrier-mediated diffusion through lipid bilayers.Biochim. Biophys. Acta 330:325–334

    Google Scholar 

  • Grell, E., Funck, T., Eggers, F. 1975. Structure and dynamic properties of ion-specific antibiotics.In: Membranes — A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 1–126. Marcel Dekker, New York

    Google Scholar 

  • Grunwald, E.G., Baughman, G., Kohnstam, G. 1960. The solvation of electrolytes in dioxane water mixtures, as deduced from the effect of solvent change on the standard partial molar free energy.J. Am. Chem. Soc. 82:5801–5811

    Google Scholar 

  • Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187–282

    Google Scholar 

  • Hladky, S.B. 1972. The steady-state theory of the carrier transport of ions.J. Membrane Biol. 10:67–91

    Google Scholar 

  • Hladky, S.B. 1973. The effect of stirring on the flux of carriers into black lipid membranes.Biochim. Biophys. Acta 307:261–269

    Google Scholar 

  • Hladky, S.B. 1975a. Steady-state ion transport by nonactin and trinactin.Biochim. Biophys. Acta 375:350–362

    Google Scholar 

  • Hladky, S.B. 1975b. Tests of the carrier model for ion transport by nonactin and trinactin.Biochim. Biophys. Acta 375:327–349

    Google Scholar 

  • Hladky, S.B. 1979a. Ion transport and displacement currents with membrane bound carriers.J. Membrane Biol. 46:213–237

    Google Scholar 

  • Hladky, S.B. 1979b. The carrier mechanism.Curr. Top. Membr. Transp. 12:53–164

    Google Scholar 

  • Knoll, W., Stark, G. 1975. An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes.J. Membrane Biol. 25:249–270

    Google Scholar 

  • Krasne, S., Eisenman, G. 1976. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes. I. Tetranactin and the methylation of nonactintype carriers.J. Membrane Biol. 30:1–44

    Google Scholar 

  • Laprade, R., Ciani, S.M., Eisenman, G., Szabo, G. 1975. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation.In: Membranes — A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 127–214. Marcel Dekker, New York

    Google Scholar 

  • Laprade, R., Grenier, F., Asselin, S. 1978. Influence of methylation of ionophore on the kinetics of carrier-mediated ion transport in lipid bilayers. Abstracts, 6th Int. Biophysics Congress, Kyoto, p. 361

  • Laprade, R., Grenier, F., Asselin, S. 1979. Measurement of lateral diffusion coefficient of ion carriers in lipid bilayers using conductance measurements.Biophys. J. 25 (2):180A

    Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458–466

    Google Scholar 

  • Markin, V.S., Kristalik, L.I., Liberman, E.A., Topaly, V.P. 1969. Cell biophysics. Mechanism of conductivity of artificial phospholipid membranes in the presence of ion carriers.Biofizika 2 14:256–264

    Google Scholar 

  • Markin, V.S., Liberman, Y.A. 1973. Transitional current on voltage clamping of a membrane with an ion carrier. Theory.Biophysics 18:475–482

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398–404

    Google Scholar 

  • Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes: II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160–1170

    Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems.Nature (London) 221:844–846

    Google Scholar 

  • Pressman, B.C., Harris, E.J., Jaeger, W.S., Johnson, J.H. 1967. Antibiotic-mediated transport of alkali ions across lipid barriers.Proc. Natl. Acad. Sci. USA 58:1949–1956

    Google Scholar 

  • Shemyakin, M.M., Ovchinikov, Yu.A., Ivanov, V.T., Antonov, V.K., Vinogradova, E.I., Shkrob, A.M., Malenkov, G.G., Evstratov, A.V., Laine, I.A., Melnik, E.I., Ryabova, I.D. 1969. Cyclodepsipeptides as chemical tools for studying ionic transport through membranes.J. Membrane Biol. 1:402–430

    Google Scholar 

  • Simon, W., Morf, W.E. 1973. Alkali cation specificity of carrier antibiotics and their behavior in bulk membranes.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 2, p. 329–375. Marcel Dekker, New York

    Google Scholar 

  • Skinner, J.F., Fuoss, R.M. 1964. Conductance of triisoamylbutylammonium and tetraphenylboride.J. Phys. Chem. 68:1882–1885

    Google Scholar 

  • Stark, G., Benz, R. 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin.J. Membrane Biol. 5:133–153

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin mediated ion transport through thin lipid membranes.Biophys. J. 11:981–984

    Google Scholar 

  • Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346–382

    Google Scholar 

  • Szabo, G., Eisenman, G., Ciani, S.M., Laprade, R., Krasne, S. 1973. Experimentally observed effects of carriers on the electrical properties of membranes. The equilibrium domain.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 179–328. Marcel Dekker, New York

    Google Scholar 

  • Tosteson, D.C. 1968. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes.Fed. Proc. 27:1269–1277

    Google Scholar 

  • White, S.H. 1973. The surface charge and double layers of thin lipid films formed from neutral lipids.Biochim. Biophys. Acta 323:343–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laprade, R., Grenier, F., Lapointe, JY. et al. Effects of variation of ion and methylation of carrier on the rate constants of macrotetralide-mediated ion transport in lipid bilayers. J. Membrain Biol. 68, 191–206 (1982). https://doi.org/10.1007/BF01872264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872264

Key words

Navigation