Skip to main content
Log in

Hormonal effects on fatty acid binding and physical properties of rat liver plasma membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10−8 to 10−6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10−6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10−10 m) and triiodothyronine (10−10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10−10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10−10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andia-Waltenbaugh, A., Friedman, N. 1978. Hormone sensitive calcium uptake by liver microsomes.Biochem. Biophys. Res. Commun. 83:603–608

    Google Scholar 

  • Andia-Waltenbaugh, A.M., Kimura, S., Wood, J., Divakaran, P., Friedman, N. 1978. Effects of glucagon, insulin, and cAMP on mitochondrial calcium uptake in the liver.Life Sci. 23:2437–2444

    Google Scholar 

  • Augee, M.L., Raison, J.K., Hulbert, A.J. 1979. Seasonal changes in membrane lipid transitions and thyroid function in the hedgehog.Am. J. Physiol. 236:E589-E593

    Google Scholar 

  • Chen, Y.D., Hoch, F.L. 1977. Thyroid control over biomembranes: Rat liver mitochondrial inner membranes.Arch. Biochem. Biophys. 181:470–483

    Google Scholar 

  • Christman, D.R., Crouch, S.R., Holland, J.F., Timnick, A. 1980. Correction for right-angle molecular fluorescence measurements for absorption of fluorescence radiation.Anal. Chem. 52:291–295

    Google Scholar 

  • Czech, M.P. 1977. Molecular basis of insulin action.Annu. Rev. Biochem. 46:359–384

    Google Scholar 

  • Davis, R.A., Kern, F., Showalter, R., Sutherland, E., Sinensky, M., Simon, F.R. 1978. Alterations in Na+, K+-ATPase and bile flow by estrogen: Effects on liver surface membrane lipid structure and function.Proc. Natl. Acad. Sci. USA 75:4130–4134

    Google Scholar 

  • DeMendoza, D., Moreno, H., Massa, E.M., Morero, R.E., Farias, R.N. 1977. Thyroid hormone actions and membrane fluidity: Blocking action thyroxine on triiodothyronine effect.FEBS Lett. 84:199–203

    Google Scholar 

  • Dipple, I., Houslay, M.D. 1978. The activity of glucagon-stimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid environment.Biochem. J. 174:179–190

    Google Scholar 

  • Faas, F.H., Carter, W.J. 1981. Fatty acid desaturation and microsomal lipid composition in experimental hyperthyroidism.Biochem. J. 195:(in press)

  • Holland, J.F., Teets, R.E., Timnick, A. 1973. A unique computer centered instrument for simultaneous absorbance and fluorescence measurements.Anal. Chem. 45:145–153

    Google Scholar 

  • Houslay, M.D., Hesketh, T.R., Smith, G.A., Warren, G.B., Metcalfe, J.C. 1976. The lipid environment of the glucagon receptor regulates adenylate cyclase activity.Biochim. Biophys. Acta 436:495–504

    Google Scholar 

  • Houslay, M.D., Metcalfe, J.D., Warren, G.B., Hesketh, T.R., Smith, G.A. 1976. The glucagon receptor of rat liver plasma membrane can couple to adenylate cyclase without activating it.Biochim. Biophys. Acta 436:489–494

    Google Scholar 

  • Hulbert, A.J. 1978. The thyroid hormones: A thesis concerning their action.J. Theor. Biol. 73:81–100

    Google Scholar 

  • Hulbert, A.J., Augee, M.L., Raison, J.D. 1976. The influence of thyroid hormones on the structure and function of mitochondrial membranes.Biochim. Biophys. Acta 455:597–601

    Google Scholar 

  • Keyes, W.D., Heimberg, M. 1979. Influence of thyroid status on lipid metabolism in the perfused rat liver.J. Clin. Invest. 63:182–190

    Google Scholar 

  • Kiss, Z. 1979. Involvement of calcium in the inhibition by insulin of the glucagon-stimulated adenylate cyclase activity.Eur. J. Biochem. 95:607–611

    Google Scholar 

  • Kreiner, P.W., Keirns, J.J., Bitensky, M.S. 1973. A temperature sensitive change in the energy of activation of hormone stimulated hepatic adenylate cyclase.Proc. Natl. Acad. Sci. USA 70:1785–1789

    Google Scholar 

  • Kury, P.G., Ramwell, P.W., McConnell, H.M. 1974. The effect of prostaglandins E1 and E2 on the human erythrocyte as monitored by spin labels.Biochem. Biophys. Res. Commun. 56:478–483

    Google Scholar 

  • Lee, G., Consiglio, E., Habig, W., Dyer, S., Hardegee, C., Kohn, L.D. 1978. Structure: function studies of receptors for thyrotropin and tetanus toxin: Lipid modulation of effector binding to the glycoprotein receptor component.Biochem. Biophys. Res. Commun. 83:313–320

    Google Scholar 

  • Livingstone, C.J., Schachter, D. 1980. Calcium modulates the lipid dynamics of rat hepatocytes plasma membranes by direct and indirect mechanisms.Biochemistry 19:4823–4827

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Luly, P., Shinitzky, M. 1979. Gross structural changes in isolated liver cell plasma membranes upon binding insulin.Biochemistry 18:445

    Google Scholar 

  • Mehdi, S.Q., Nussey, S.S., Shindelman, J.E., Kriss, J.P. 1977. The influence of lipid substitution on thyrotropin-receptor interactions in artificial vesicles.Endocrinology 101:1406–1412

    Google Scholar 

  • Moskal, J.R., Emaus, R.K., Holland, J.F. 1977. β-Parinaric acid as a member probe in culture human epidermoid carcinoma (KB) cells.Fed. Proc. 37:1597, a 1805

    Google Scholar 

  • Nelson, D.H. 1980. Corticosteroid-induced changes in phospholipid membranes as mediators of their action.Endocr. Rev. 1:180–199

    Google Scholar 

  • Peifer, J.J. 1968. Disproportionally higher levels of myocardial docosahexaenoate and elevated levels of plasma and liver arachidonate in hyperthyroid rats.J. Lipid Res. 9:193–199

    Google Scholar 

  • Platner, W.S., Patnayak, D.B., Chaffee, R.R.J. 1972. A comparison of magnesium deficiency, cold acclimation and thyroxine administration on mitochondrial fatty acid composition.Proc. Soc. Exp. Biol. Med. 140:857–861

    Google Scholar 

  • Pohl, S.L. 1976. Isolation of liver plasma membranes. In: Methods in Receptor Research. M. Blecher, editor. pp. 159–174. Marcel Dekker Inc., New York

    Google Scholar 

  • Rahwan, R.G., Piascik, M.F., Witiak, D.T. 1979. The role of calcium antagonism in the therapeutic action of drugs.Can. J. Physiol. Pharmacol. 57:443–460

    Google Scholar 

  • Salee, V.L. 1979. Permeation of long chain fatty acids and alcohols in rat intestine.Am. J. Physiol. 236:E721-E727

    Google Scholar 

  • Sanui, H., Rubin, A.H. 1978. Membrane bound and cellular cationic changes associated with insulin stimulation of cultured cells.J. Cell. Physiol. 96:265–268

    Google Scholar 

  • Schrade, D.S., Woodside, W., Eaton, R.P. 1979. The role of glucagon in the regulation of plasma lipids.Metabolism 28:874–886

    Google Scholar 

  • Schroeder, F., Goh, E.J. 1979. Regulation of VLDL interior core lipid physicochemical properties.J. Biol. Chem. 254:2464–2470

    Google Scholar 

  • Schroeder, F., Goh, E.H. 1980. Regulation of microsomal membrane fluidity by fatty acids in the perfused liver.Chem. Phys. Lipids. 26:207–224

    Google Scholar 

  • Schroeder, F., Holland, J.F., Vagelos, P.R. 1976. Use of a novel fluorometric probe, parinaric acid, to investigate the fluidity of LM cell membranes.J. Biol. Chem. 251:6739–6746

    Google Scholar 

  • Schroeder, F., Wilcox, H.G., Keyes, W.G., Heimberg, M. 1981.Endocrinology (in press)

  • Shlatz, G.S., Marinetti, G.V. 1972. Hormone-calcium interactions with the plasma membrane of rat liver cells.Science 176:175–177

    Google Scholar 

  • Sklar, L.A., Hudson, B.S., Simoni, R.D. 1977. Conjugated polyene fatty acids as fluorescent probes: Binding to bovine serum albumin.Biochemistry 23:5100–5108

    Google Scholar 

  • Sklar, L.A., Miljanich, G.P., Dratz, E.A. 1979. Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid, and fluid lipid phases.Biochemistry 18:1707–1716

    Google Scholar 

  • Soler-Argilaga, C., Russell, R.L., Werner, H.V., Heimberg, M. 1978. A possible role of calcium in the action of glucagon, cyclic AMP and dibutyryl cAMP on the metabolism of free fatty acids by rat hepatocytes.Biochem. Biophys. Res. Commun. 85:249–256

    Google Scholar 

  • Spector, A.A., Fletcher, J.E. 1978. Transport of fatty acid in the circulation.In: Disturbances in Lipid and Lipoprotein Metabolism. J.M. Dietschy, A.M. Gotto and J.A. Ontko, editors. pp. 229–249. Williams and Wilkins Co., Baltimore

    Google Scholar 

  • Steffen, D.G., Platner, W.S. 1976. Subcellular membrane fatty acids of rat heart after cold acclimation or thyroxine.Am. J. Physiol. 231:650–654

    Google Scholar 

  • Weisinger, R., Gollan, J., Ockner, R. 1981. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances.Science 211:1048–1051

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, F. Hormonal effects on fatty acid binding and physical properties of rat liver plasma membranes. J. Membrain Biol. 68, 1–10 (1982). https://doi.org/10.1007/BF01872248

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872248

Key words

Navigation