Skip to main content
Log in

Characterization of Na+ transport in normal human fibroblasts and neoplastic H.Ep.2 cells and the role of inhibitin

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Na+ transport was characterized in normal human fibroblasts and neoplastic H.Ep. 2 cells in order to investigate the role of the endogenous peptidic factor ‘inhibitin’ that is secreted by a variety of neoplastic cells (including H.Ep. 2) and inhibits Na+/Na+ exchange in human erythrocytes. Although active (Na+, K+-ATPase mediated) Na+ fluxes were similar in the two cell types, H.Ep. 2 cells maintained higher intracellular Na[su+] concentration (26mm) compared to fibroblasts (12mm). An analysis of passive Na+ fluxes showed a difference in the handling of Na+ via ouabain and bumetanide-insensitive transport between the two cell types: H.Ep. 2 cells achieved net Na+ influx via an amiloride-sensitive pathway that was only demonstrated in fibroblasts when 10% fetal calf serum (FCS) was present. Kinetic studies were undertaken to investigate the interaction between Na+ flux via Na+/H+ and Na+/Na+ exchanges. for this purpose, an outwardly directed Na+ gradient was created by loading the cells with Na+ (Na i >100mm) to activate the reverse functioning of Na+/H+ exchange (i.e., Na +out H +in ). The rates of ouabain-and bumetanide-insensitive Na+ efflux were measured over a range of extracellular Na+ concentrations (Na + o 14–140mm). In the presence of 10% FCS, the two cell types showed different responses: in fibroblasts the Na+ efflux rate showed an inverse correlation with extracellular Na+ concentration, while H.Ep. 2 cells significantly increased their rate of Na+ efflux as extracellular Na+ concentration increased. So although the thermodynamic force would direct net Na+ efflux when Na + i >Na + o , H.Ep.2 cells were under kinetic control to perform Na+/Na+ exchange.

When exogenous inhibitin was tested on fibroblasts, the steady-state intracellular Na+ concentration increased from 14 to 19mm (p<0.01). In Na+-loaded fibroblasts, serum-stimulated Na+ efflux was partially inhibitin sensitive and the maximal inhibitory effect was seen when extracellular Na+ concentration was 14mm and presumably the Na+/H+ exchanger operating in the reverse mode. This study demonstrated that, in contrast to fibroblasts, H.Ep.2 cells have a modified Na+/H+ exchange system whereby it acts in the Na +in H +out mode without exogenous growth factor activation and resists functioning in the reversed mode. It is proposed that inhibitin, is the endogenous modifier of this transport system in H.Ep.2 cells with the result that H.Ep.2 cells maintain a higher concentration of intracellular Na+ compared to fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aickin, C.C., Thomas, R.C. 1977. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres.J. Physiol. (London) 273:295–316

    Google Scholar 

  2. Aiton, J.E., Chipperfield, A.R., Lamb, J.F., Ogden, P., Simmons, N.L. 1981. Occurrence of passive furosemide sensitive transmembrane potassium transport in cultured cells.Biochim. Biophys. Acta 646:389–398

    Google Scholar 

  3. Aronson, P.S., Nee, J., Suhm, M.A. 1982. Modifier role of internal H+ in activating the Na+/H+ exchanger in renal microvillus membrane vesicles.Nature (London) 299:161–163

    Google Scholar 

  4. Aronson, P.S., Suhm, M.A., Nee, J. 1983. Interaction of external H+ with the Na+ H+ exchanger in renal microvillus membrane vesicles.J. Biol. Chem. 258:6767–6771

    PubMed  Google Scholar 

  5. Berridge, M.J. 1975. Control of cell division of unifying hypothesis.J. Cyclic Nucle. Res. 1:305–320

    Google Scholar 

  6. Betz, A.L. 1983. Sodium transport in capillaries isolated from rat brain.J. Neurochem. 41:1150–1157

    PubMed  Google Scholar 

  7. Bourne, H., Rozengurt, E. 1976. An 18,000, molecular weight polypeptide induces early events and stimulates DNA synthesis in cultured cells.Proc. Natl. Acad. Sci. USA 73:4555–4559

    PubMed  Google Scholar 

  8. Boynton, A.L., Whitfield, J.F., Isaacs, R.J., Morton, H.J. 1974. Control of 3T3 cell proliferation by calcium.In Vitro:10:12–17

    PubMed  Google Scholar 

  9. Burnham, C., Munzesheimer, C., Rabon, E., Sachs, G. 1982. Ion pathways in renal brush border membranes.Biochim. Biophys. Acta 685:260–272

    PubMed  Google Scholar 

  10. Busa, W.B., Nuccitelli, R. 1984. Metabolic regulation via intracellular pH.Am. J. Physiol. 246:R409-R438

    PubMed  Google Scholar 

  11. Cameron, I.L., Smith, N.K.R. Pool, T.B., Sparks, R.L. 1980. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo.Cancer Res. 40:1493–1500

    PubMed  Google Scholar 

  12. Canessa, M., Brugnara, C., Cusi, D., Tosteson, D.C. 1986. Modes of operation and variable stoichiometry of the furosemide-sensitive Na and K fluxes in human red cells.J. Gen. Physiol. 87:113–142

    Google Scholar 

  13. Cassel, D., Rothenberg, P., Zhuag, Y.X., Dauel, T.F., Glaser, L. 1983. Platelet derived growth factor stimulates Na+ H+ exchange and induces cytoplasmic alkalinization in NR6 cells.Proc. Natl. Acad. Sci. USA 80:6224–6228

    PubMed  Google Scholar 

  14. Cohen, D.E., Hruska, K.A., Klahr, S., Hammerman, M.R. 1982. Increased Na+ H+ exchange in brush border vesicles from dogs with renal failure.Am. J. Physiol. 242:F293-F299

    PubMed  Google Scholar 

  15. Costa-Casnellie, M.R., Segal, G.B., Cragoe, E.J. Jr., Lichtman, M.A. 1987. Characterisation of the Na+/H+ exchanger during maturation of HL.60 cells induced by dimethyl sulfoxide.J. Biol. Chem. 262:9093–9097

    PubMed  Google Scholar 

  16. Crane, R.K. 1964. Uphill outflow of sugar from intestinal epithelial cells induced by reversal of the Na+ gradient: Its significance for the mechanism of Na+ dependent active transport.Biochim. Biophys. Res. Commun. 17:481–485

    Google Scholar 

  17. Dunn, M.J. 1970. The effects of transport inhibitors on sodium outflux and influx in red blood cells: Evidence for exchange diffusion.J. Clin. Invest. 49:1804–1814

    PubMed  Google Scholar 

  18. Durham, A.C.H., Walton, J.M. 1982. Calcium ions and the control of proliferation in normal and cancer cells.Biosci. Rep. 2:15–30

    PubMed  Google Scholar 

  19. Geck, P., Pictrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na, K and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–447

    PubMed  Google Scholar 

  20. Glynn, I.M. 1956. Sodium and potassium movements in human red cells.J. Physiol. (London) 134:278–310

    Google Scholar 

  21. Grinstein, S., Cohen, S., Rothstein, A. 1984. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport.J. Gen. Physiol. 83:341–369

    Google Scholar 

  22. Kasarov, L.B., Friedman, H. 1974. Enhanced Na+ K+-activated adenosine triphosphatase activity in transformed fibroblasts.Cancer Res. 34:1862–1865

    PubMed  Google Scholar 

  23. Kashiwagura, T., Deutsch, C.J., Taylor, J., Erecinska, M., Wilson, D.F. 1984. Dependence of gluconeogenesis, urea synthesis and energy metabolism of hepatocytes on intracellular pH.J. Biol. Chem. 259:237–243

    PubMed  Google Scholar 

  24. Kimelberg, H.K., Mayhew, E. 1975. Increased ouabain-sensitive86Rb+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines.J. Biol. Chem. 250:100–104

    Google Scholar 

  25. Kinsella, J.L., Aronson, P.S. 1981. Interaction of NH +4 and Li+ with the renal microvillus membrane Na+H+ exchanger.Am. J. Physiol. 241:C220-C226

    Google Scholar 

  26. Lowe, D.A., Richardson, B.P., Taylor, P., Donatsch, P. 1976. Increasing intracellular sodium triggers calcium release from bound pools.Nature (London) 260:337–338

    Google Scholar 

  27. Lowry, O.H., Roseborough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  28. Lubin, M. 1967. Intracellular potassium and macromolecular synthesis in mammalian cells.Nature (London) 213:451–453

    Google Scholar 

  29. Lubin, M., Ennis, H.L. 1964. On the role of intracellular potassium in protein synthesis.Biochim. Biophys. Acta 80:614–631

    PubMed  Google Scholar 

  30. Lubowitz, H. 1972. Exchange diffusion in human red blood cells.Proc. Soc. Exp. Biol. Med. 140:153–156

    PubMed  Google Scholar 

  31. Lubowitz, H., Whittam R. 1969. Ion movements in human red cells independent of the sodium pump.J. Physiol. (London) 202:111–131

    Google Scholar 

  32. McRoberts, J.A., Erlinger, S., Rindler, M.J., Saier, M.J. Jr. 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line.J. Biol. Chem. 257:2260–2266

    PubMed  Google Scholar 

  33. Mendoza, S.A., Wigglesworth, N.M., Pohjanpelto, P., Rozengurt, E. 1980. Na entry and Na−K pump activity in murine, hamster and human cells: Effect of monensin serum, platelet extract and viral transformation.J. Cell. Physiol. 103:17–27

    PubMed  Google Scholar 

  34. Metcalfe, J.C., Pozzan, T., Smith, G.A., Heskith, T.R. 1980. A calcium hypothesis for the control of cell growth.Biochem. Soc. Symp. 45:1–26

    Google Scholar 

  35. Moolenaar, W.H., Boonstra, J., Van der Saag P.T., Laat, S.W. de 1981. Sodium/proton exchange in mouse neuroblastoma cells.J. Biol. Chem. 256:12883–12887

    Google Scholar 

  36. Moolenaar, W.H., Mummery, C.L., Van der Saag, P.T., Laat, S.W. de 1981. Rapid ionic events and the initiation of growth in serum stimulated neuroblastoma cells.Cell 23:789–798

    PubMed  Google Scholar 

  37. Moolenaar, W.H., Yarden, Y., Laat, S.W. de, Schlessinger, J. 1982. Epidermal growth factor induces electrically silent Na+ influx in human fibroblasts.J. Biol. Chem. 257:8502–8506

    PubMed  Google Scholar 

  38. Moore, R.D. 1981. Stimulation of Na∶H exchange by insulin.Biophys. J. 33:203–210

    PubMed  Google Scholar 

  39. Morgan, K., Brown, R.C., Spurlock, G., Southgate, K., Mir, M.A. 1986. Inhibitin: A specific inhibitor of sodium/sodium exchange in erythrocytes.J. Clin. Invest. 77:538–544

    PubMed  Google Scholar 

  40. Morgan, K., Mir, M.A. 1984. Isolation of a sodium transport inhibitory factor, inhibitin, from cultured leukemic promyelocytes.J. Clin. Invest 74:1132–1142

    PubMed  Google Scholar 

  41. Morgan, K., Spurlock, G., Brown, R.C., Mir, M.A. 1987 Release of a sodium transport inhibitor (inhibitin) from cultured human cancer cells.Cancer Res. 45:6095–6100

    Google Scholar 

  42. Morgan, K., Spurlock, G., Mir, M.A. 1985. Leukaemic promyelocytes and normal bone marrow cells release a passive sodium transport modifier (inhibitin).Clin. Sci. 68:365–368

    PubMed  Google Scholar 

  43. Murer, H., Hopfer, U., Kinne, R. 1976. Sodium/proton antiport in brush-border membrane vesicles isolated from rat small intestine and kidney.Biochem. J. 154:597–604

    PubMed  Google Scholar 

  44. Ober, S.S., Pardee, A.B. 1987. Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts.Proc. Natl. Acad. Sci. USA 84:2766–2770

    PubMed  Google Scholar 

  45. Owen, N.E., Prastein, M.L. 1985. Na/K/Cl cotransport in cultured human fibroblasts.J. Biol. Chem. 260:1445–1451

    PubMed  Google Scholar 

  46. Panet, R. 1985. Serum induced net K+ influx performed by the diuretic-sensitive transport system in quiescent NIH 3T3 mouse fibroblasts.Biochim. Biophys. Acta 813:141–144

    PubMed  Google Scholar 

  47. Post, R.L., Jolly, P.C. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane.Biochim. Biophys. Acta 25:118–128

    PubMed  Google Scholar 

  48. Pouyssegur, J., Chambard, J.C., Franchi, A., Paris, S., Obberghen-Schilling, E. van 1982. Growth factor activation of an amiloride-sensitive Na+/H+ exchange system in quiescent fibroblasts: Coupling to ribosomal protein S6 phosphorylation.Proc. Natl. Acad. Sci. USA 79:3935–3939

    PubMed  Google Scholar 

  49. Rindler, M.J., McRoberts, J.A., Saier, M.H. Jr. 1982. (Na+, K+) cotransport in MDCK cell lines.J. Biol. Chem. 257:2254–2259

    PubMed  Google Scholar 

  50. Rindler, M.J., Saier, M.H. Jr. 1981. Evidence for Na+/H+ antiport in cultured dog kidney cells (MDCK).J. Biol. Chem. 256:10820–10825

    PubMed  Google Scholar 

  51. Rindler, M.J., Taub, M., Saier, M.H. Jr. 1979. Uptake of22Na+ by cultured dog kidney cells (MDCK).J. Biol. Chem. 254:11431–11439

    PubMed  Google Scholar 

  52. Ross, R., Glosmet, J., Kariya, B., Harker, L. 1974. Plateletdependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro.Proc. Natl. Acad. Sci. USA 71:1207–1210

    PubMed  Google Scholar 

  53. Rothenberg, P., Glaser, L., Schlesinger, P., Cassel, D. 1983 Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells.J. Biol. Chem. 258:12644–12653

    PubMed  Google Scholar 

  54. Rozengurt, E., Heppel, L.A. 1975. Serum rapidly stimulates ouabain-sensitive86Rb+ influx in quiescent 3T3 cells.Proc. Natl. Acad. Sci. USA 72:4492–4495

    PubMed  Google Scholar 

  55. Shen, S.S., Hamamoto, S.T., Bern, H.A., Steinhardt, R.A. 1978. Alteration of sodium transport in mouse mammary epithelium associated with neoplastic transformation.Cancer Res. 38:1356–1361

    PubMed  Google Scholar 

  56. Smith, G.L. 1977. Increased ouabain-sensitive86rubidium uptake after mitogenic stimulation of quiescent chicken embryo fibroblasts with purified multiplication-stimulating activity.J. Cell Biol. 73:761–767

    PubMed  Google Scholar 

  57. Smith, J.B., Rozengurt, E. 1978. Serum stimulates the Na+K+ pump by quiescent fibroblasts by increasing Na+ entry.Proc. Natl. Acad. Sci. USA 75:5560–5564

    PubMed  Google Scholar 

  58. Spurlock G., Morgan, K., Mir, M.A. 1985. A reproducible procedure for measuring sodium transport in cultured human fibroblasts from normal and obese donors.Clin. Chim. Acta 153:225–232

    PubMed  Google Scholar 

  59. Spurlock, G., Morgan, K., Mir, M.A. 1986. Serum stimulation of sodium transport in human fibroblasts containing low and high levels of intracellular sodium.J. Membrane Biol. 92:163–170

    Google Scholar 

  60. Villereal M.L. 1981. Sodium fluxes in human fibroblasts: Effects of serum, Ca2+ and amiloride.J. Cell Physiol. 107:359–369

    PubMed  Google Scholar 

  61. Villereal, M.L. 1981. Sodium fluxes in human fibroblasts: Kinetics of serum-dependent and serum-independent pathways.J. Cell. Physiol. 108:251–259

    PubMed  Google Scholar 

  62. Wheeler K.P., Christensen, H.N. 1967. Role of Na+ in the transport of amino acids in rabbit red cells.J. Biol. Chem. 242:3782–3788

    PubMed  Google Scholar 

  63. Whitfield, J.F., Boynton, A.L., MacManus, J.P., Rixon, R.H., Sikorska, M., Tsang, B., Walker, P.R., Swierenga, S.H.H. 1981. The roles of calcium and cyclic AMP in cell proliferation.Ann. N. Y. Acad. Sci. 339:216–240

    Google Scholar 

  64. Whitfield, J.R., MacManus, J.P., Rixon, R.H., Boynton, A.C., Youdale, T., Swierenga, S.H.H. 1976. The possible control of cell proliferation by the interplay of calcium ions and cyclic nucleotides.In Vitro 12:1–18

    PubMed  Google Scholar 

  65. Wiley, J.S., Cooper, R.A. 1974. A frusemide-sensitive cotransport of sodium plus potassium in the human red cell.J. Clin. Invest. 53:745–755

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spurlock, G., Morgan, K. & Mir, M.A. Characterization of Na+ transport in normal human fibroblasts and neoplastic H.Ep.2 cells and the role of inhibitin. J. Membrain Biol. 106, 219–231 (1988). https://doi.org/10.1007/BF01872160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872160

Key Words

Navigation