The Journal of Membrane Biology

, Volume 98, Issue 2, pp 117–124 | Cite as

Effect of membrane potential on furosemide-inhibitable sodium influxes in human red blood cells

  • George R. Kracke
  • Philip B. Dunham
Articles

Summary

Furosemide-inhibitable Na influx (a measure of Na/K/Cl cotransport) was determined as a function of membrane potential in human red blood cells. The membrane potential was varied from −42 to +118 mV using valinomycin and gradients of K. The furosemide-inhibitable, unidirectional Na influx was independent of membrane potential over the entire range of potentials. The change in flux per mV, 0.443 μmol/(liter cells·hr· mV), was not significantly different from zero. The mean flux was 153±16μmol/(liter cells·hr) (±sem,n=71). The ouabain and furosemide-resistant influexes of Na and K were also measured as functions of membrane potential using either valinomycin and K or a chloride-free, tartrate flux medium to vary membrane potential. The unidirectional Na influx decreased slightly as the membrane potential was increased from negative potentials to about +10 mV. At higher membrane potentials Na influx rose dramatically with potential. This increase was not reversible and was also observed with K influx.

Key Words

Na/K/Cl cotransport furosemide valinomycin erythrocytes DIDS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brugnara, C., Canessa, M., Cusi, D., Tosteson, D.C. 1986. Furosemide-sensitive Na and K fluxes in human red cells. Net uphill Na extrusion and equilibrium properties.J. Gen. Physiol. 87:91–112Google Scholar
  2. Canessa, M., Brugnara, C., Cusi, D., Tosteson, D.C. 1986. Modes of operation and variable stoichiometry of the furosemide-sensitive Na and K fluxes in human red cells.J. Gen. Physiol. 87:113–142Google Scholar
  3. Chipperfield, A.R. 1980. An effect of chloride on (Na+K) cotransport in human red blood cells.Nature (London) 286:281–282Google Scholar
  4. Chipperfield, A.R., Shennan, D.B. 1986. The influence of pH and membrane potential on passive Na+ and K+ fluxes in human red blood cells.Biochim. Biophys. Acta 886:373–382Google Scholar
  5. Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715Google Scholar
  6. Ellory, J.C., Dunham, P.B., Logue, P.J., Stewart, G.W. 1982. Anion-dependent cation transport in erythrocytes.Philos. Trans. R. Soc. London B 299:483–495Google Scholar
  7. Freedman, J.C., Hoffman, J.F. 1979. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol. 74:187–212Google Scholar
  8. Geck, P., Pietrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport in Na+, K+, and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–447Google Scholar
  9. Greger, R., Schlatter, E. 1981. Presence of luminal K, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 392:92–94Google Scholar
  10. Grinstein, S.A., Rothstein, A., Sarkadi, B., Gelfand, E.W. 1984. Responses of lymphocytes to anisotonic media: Volume-regulating behavior.Am. J. Physiol. 246:C204-C215Google Scholar
  11. Haas, M., Schmidt, W.F., III, McManus, T.J. 1982. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na+K+2Cl] cotransport.J. Gen. Physiol. 80:125–147Google Scholar
  12. Hall, A.C., Ellory, J.C. 1985. Measurements and stoichiometry of bumetanide-sensitive (2Na ∶ 1K ∶ 3Cl) cotransport in ferret red cells.J. Membrane Biol. 85:205–213Google Scholar
  13. Hille, B. 1984. Ionic Channels of Excitable Membranes. p. 231. Sinauer Associates, Sunderland, Mass.Google Scholar
  14. Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer.J. Physiol. (London) 268:35–49Google Scholar
  15. Knauf, P.A. 1985. Anion transport in erythrocytes.In: Physiology of Membrane Disorders. T.E. Andreoli, J.F. Hoffman, D.F. Fanestil, and S.G. Schultz, editors. Plenum Medical Book Co., New YorkGoogle Scholar
  16. Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386Google Scholar
  17. McRoberts, J.A., Ehrlinger, S., Rindler, M.J., Saier, M.H., Jr. 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl.J. Biol. Chem. 257:2260–2266Google Scholar
  18. Russell, J.M. 1983. Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process.J. Gen. Physiol. 81:909–925Google Scholar
  19. Russell, J.M. 1984. Chloride in the squid axon.Curr. Top. Membr. Transp. 22:177–193Google Scholar
  20. Sachs, J.R. 1970. Sodium movements in the human red blood cell.J. Gen. Physiol. 56:322–341Google Scholar
  21. Sachs, J.R., Ellory, J.C., Kropp, D.L., Dunham, P.B., Hoffman, J.F. 1974. Antibody-induced alterations in the kinetic characteristics of the Na: K pump in goat red blood cells.J. Gen. Physiol. 63:389–414Google Scholar
  22. Saier, M.H., Boyden, D.A. 1984. Mechanism, regulation, and physiological significance of the loop diuretic-sensitive NaCl/ KCl symport system in animal cells.Mol. Cell. Biochem. 59:11–32Google Scholar
  23. Spiegel, M.R. 1961. Theory and Problems of Statistics, p. 247. Shaum Publishing Co., New YorkGoogle Scholar
  24. Warnock, D.G., Greger, R., Dunham, P.B., Benjamin, M.A., Frizzell, R.A., Field, M., Spring, K.R., Ives, H.E., Aronson, P.S., Seifter, J. 1984. Ion transport processes in apical membranes of epithelia.Fed. Proc. 43:2473–2487Google Scholar
  25. Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J. Clin. Invest. 53:745–755Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • George R. Kracke
    • 1
  • Philip B. Dunham
    • 1
  1. 1.Department of BiologySyracuse UniversitySyracuse

Personalised recommendations