Acta Mathematica Hungarica

, Volume 61, Issue 1–2, pp 93–98 | Cite as

A decomposition of continuity and α-continuity

  • M. Przemski
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Andrijević, Semi-preopen sets,Mat. Vesnik,38 (1986), 24–32.Google Scholar
  2. [2]
    S. G. Crossley, S. K. Hildebrand, Semi-closure,Texas J. Sci.,22 (1971), 99–112.Google Scholar
  3. [3]
    J. Ewert, On quasi-continuous and cliquish maps with values in uniform spaces,Bull. Acad. Polon. Sci.,32 (1984), 81–88.Google Scholar
  4. [4]
    H. Hashimoto, On the topology and its application,Fund. Math.,XCI (1976), 5–10.Google Scholar
  5. [5]
    N. Levine, Semi-open sets and semi-continuity in topological spaces.Amer. Math. Monthly,70 (1963), 36–41.Google Scholar
  6. [6]
    A. S. Mashhour, M. E. El-Monsef, S. N. El-Deep, On precontinuous and weak precontinuous mappings,Proc. Math. and Phys. Soc. Egypt,51 (1981).Google Scholar
  7. [7]
    A. Neubrunnová, On transfinite sequences of certain types of functions,Acta Fac. Rer. Natur. Univ. Comenianae Math.,30 (1975), 121–126.Google Scholar
  8. [8]
    O. Njåstad, On some classes of nearly open sets,Pacific J. Math.,15 (1965), 961–970.Google Scholar
  9. [9]
    T. Noiri, On α-continuous functions,Casopis Pěst. Mat.,109 (1984), 118–126.Google Scholar
  10. [10]
    Z. Piotrowski, Some remarks on almost continuous functions.Math. Slovaca,39, (1989), 75–80.Google Scholar
  11. [11]
    I. Z. Reilly, M. K. Vamanamurthy, On α-continuity in topological spaces,University of Auckland Report Series, No. 193 (1982).Google Scholar
  12. [12]
    J. Tong, A decomposition of continuity,Acta Math. Hungar. 48, (1986), 11–15.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • M. Przemski
    • 1
  1. 1.Warsaw university, Bialystok BranchInstitute of MathematicsBialystokPoland

Personalised recommendations