Skip to main content
Log in

Are axoplasmic microtubules necessary for membrane excitation?

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The excitability of the squid giant axon was studied as a function of transmembrane hydrostatic pressure differences, the latter being altered by the technique of intracellular perfusion. When a KF solution was used as the internal medium, a pressure difference of about 15 cm water had very little effect on either the membrane potential or excitability. However, within a few minutes after introducing either a KCl-containing, a KBr-containing, or a colchicine-containing solution as the internal medium, with the same pressure difference across the membrane, the axon excitability was suppressed. In these cases, removal of the pressure difference restored the excitability, indicating that the structure of membrane was not irreversibly damaged. Electron-microscopic observations of these axons revealed that the perfusion with a KF solution or colchicine-containing solution preserves the submembranous cytoskeletal layer, whereas perfusion with a KCl or KBr solution dissolves it. These results suggest that the submembranous cytoskeletons including microtubules provide an important mechanical support to the excitable membrane but are not essential elements in channel activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque, E.X., Warnick, J.E., Tasse, J.R., Sansone, F.M. 1972. Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat.Exp. Neurol. 37:607–634

    Article  PubMed  Google Scholar 

  • Allison, A.C., Nunn, J.F. 1968. Effects of general anaesthetics on microtubules. A possible mechanism of anaesthesia.Lancet 2:1326–1329

    PubMed  Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Shaw, T.I. 1962. Replacement of the axoplasm of giant nerve fibres with artificial solutions.J. Physiol. (London) 164:330–354

    Google Scholar 

  • Baumgold, J., Terakawa, S., Iwasa, K., Gainer, H. 1981. Membrane-associated cytoskeletal proteins in squid giant axons.J. Neurochem. 36:759–764

    PubMed  Google Scholar 

  • Baux, G., Simonneau, M., Tauc, L. 1981. Action of colchicine on membrane currents and synaptic transmission inAplysia ganglion cells.J. Neurobiol. 12:75–85

    PubMed  Google Scholar 

  • Chang, D.C. 1983. A voltage-clamp study of the effects of colchicine on the squid giant axon.J. Cell. Physiol. 115:260–264

    PubMed  Google Scholar 

  • Dahlström, A. 1968. Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat.Eur. J. Pharmacol. 5:111–113

    PubMed  Google Scholar 

  • Fernandez, H. L., Burton, P. R., Samson, F. E. 1971. Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons.J. Cell Biol. 51:176–192

    PubMed  Google Scholar 

  • Fukuda, J., Kameyama, M., Yamaguchi, K. 1981. Breakdown of cytoskeletal filaments selectively reduces Na and Ca spikes in cultured mammal neurones.Nature (London) 294:82–85

    Google Scholar 

  • Guba, F. 1950. Effect of halogen ions on F-action.Nature (London) 165:439

    Google Scholar 

  • Hinkley, R.E., Jr., Green, L. 1971. Effects of halothane and colchicine on microtubules and electrical activity of rabbit vagus nerves.J. Neurobiol. 2:97–105

    PubMed  Google Scholar 

  • Inoue, I., Pant, H.C., Tasaki, I., Gainer, H. 1976. Release of proteins from the inner surface of squid axon membrane labeled with tritiatedn-ethylmaleimide.J. Gen. Physiol. 68:385–395

    PubMed  Google Scholar 

  • Jackson, P., Diamond, J. 1977. Colchicine block of cholinesterase transport in rabbit sensory nerves without interference with the long-term viability of the axons.Brain Res. 130:579–584

    PubMed  Google Scholar 

  • Karlsson, J.O., Sjöstrand, J. 1969. The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit.Brain Res. 13:617–619

    PubMed  Google Scholar 

  • Kreutzberg, G.W. 1969. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine.Proc. Natl. Acad. Sci. USA 62:722–728

    PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Landowne, D., Larsen, J.B., Taylor, K.T. 1983. Colchicine alters the nerve birefringence response.Science 220:953–954

    PubMed  Google Scholar 

  • Lasek, R., Hoffman, P.N. 1976. The neuronal cytoskeleton, axonal transport and axonal growth.In: Cell Motility. R. Goldmann, T. Pollard and J. Rosenbaum, editors. pp. 1021–1049. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Matsumoto, G., Ichikawa, M., Tasaki, A. 1984a. Axonal microtubules necessary for generation of sodium current in squid giant axons. II. Effect of colchicine upon asymmetrical displacement current.J. Membrane Biol. 77:93–99

    Google Scholar 

  • Matsumoto, G., Ichikawa, M., Tasaki, A., Murofushi, H., Sakai, H. 1984b. Axonal microtubules necessary for generation of sodium current in squid giant axons. I. Pharmacological study on sodium current and restoration of sodium current by microtubule proteins and 260K protein.J. Membrane Biol. 77:77–91

    Google Scholar 

  • Matsumoto, G., Murofushi, H., Endo, S., Kobayashi, T., Sakai, H. 1983. Tyrosinated tubulin necessary for maintenance of membrane excitability in squid giant axon.In: Structure and Function in Excitable Cells. D.C. Chang, I. Tasaki, W.J. Adelman, Jr., and H.R. Leuchtag, editors. pp. 471–483. Plenum, New York

    Google Scholar 

  • Matsumoto, G., Murofushi, H., Sakai, H. 1980. The effects of reagents affecting microtubules and microfilaments on the excitation of the squid giant axon measured by the voltageclamp method.Biomed. Res. 1:355–358

    Google Scholar 

  • Matsumoto, G., Sakai, H. 1979a. Microtubules inside the plasma membrane of squid giant axons and their possible physiological function.J. Membrane Biol. 50:1–14

    Google Scholar 

  • Matsumoto, G., Sakai, H. 1979b. Restoration of membrane excitability of squid giant axons by reagents activating tyrosinetubulin ligase.J. Membrane Biol. 50:15–22

    Google Scholar 

  • Metuzals, J., Tasaki, I. 1978. Subaxolemmal filamentous network in the giant nerve fiber of the squid (Loligo Pealei L.) and its possible role in excitability.J. Cell Biol. 78:597–621

    PubMed  Google Scholar 

  • Mitolo-Chieppa, D. 1977. The effect of vinblastin and vincristin on single nerve fibres.Experientia 33:366–367

    PubMed  Google Scholar 

  • Oakley, B.R., Kirsch, D.R., Morris, N.R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels.Anal. Biochem. 105:361–363

    PubMed  Google Scholar 

  • Pant, H.C., Terakawa, S., Baumgold, J., Tasaki, I., Gainer, H. 1978. Protein release from the internal surface of the squid giant axon membrane during excitation and potassium depolarization.Biochim. Biophys. Acta 513:132–140

    PubMed  Google Scholar 

  • Pitman, R.M. 1975. The ionic dependence of action potentials induced by colchicine in an insect motoneurone cell body.J. Physiol. (London) 247:511–520

    Google Scholar 

  • Pitman, R.M., Tweedle, C.D., Cohen, M.J. 1972. Electrical responses of insect central neurons: Augmentation by nerve section or colchicine.Science 178:507–509

    PubMed  Google Scholar 

  • Rodriguez-Echandia, E.L., Piezzi, R.S., Ponce, A.Z. 1968. Cold and colchicine treatment on the fine structure and electrical activity of the sciatic nerve.Acta Physiol. Lat. Am. 18:372–376

    Google Scholar 

  • Sakai, H., Matsumoto, G. 1978. Tubulin and other proteins from squid giant axon.J. Biochem. 83:1413–1422

    PubMed  Google Scholar 

  • Schafer, R., Reagan, P.D. 1981. Colchicine reversibly inhibits electrical activity in arthropod mechanoreceptors.J. Neurobiol. 12:155–166

    PubMed  Google Scholar 

  • Seeds, N.W., Gilman, A.G., Amano, T., Nirenberg, N.W. 1970. Regulation of axon formation by clonal lines of a neural tumor.Proc. Natl. Acad. Sci. USA 66:160–167

    PubMed  Google Scholar 

  • Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26:31–43

    PubMed  Google Scholar 

  • Stadler, J., Franke, W.W. 1974. Characterization of the colchicine binding of membrane fractions from rat and mouse liver.J. Cell Biol. 60:297–303

    PubMed  Google Scholar 

  • Tasaki, I., Singer, I., Takenaka, T. 1965. Effects of internal and external ionic environment of excitability of squid giant axon. A macromolecular approach.J. Gen. Physiol. 48:1095–1123

    PubMed  Google Scholar 

  • Terakawa, S., Watanabe, A. 1976. Effects of colchicine and other antimitotic drugs on the electrophysiological properties of a crayfish axonal membrane.Proc. Jpn. Acad. 52:82–85

    Google Scholar 

  • Wessells, N.K., Spooner, B.S., Ash J.F., Bradley, M.O., Luduena, M.A., Taylor, E.L., Wrenn, J.T., Yamada, K.M. 1971. Microfilaments in cellular and developmental processes.Science 171:135–143

    PubMed  Google Scholar 

  • Yamada, K.M., Spooner, B.S., Wessells, N. 1970. Axon growth: Roles of microfilaments and microtubules.Proc. Natl. Acad. Sci. USA 66:1206–1212

    PubMed  Google Scholar 

  • Yamada, K.M., Spooner, B.S., Wessells, N. 1971. Ultrastructure and function of growth cones and axons of cultured nerve cells.J. Cell Biol. 49:614–635

    PubMed  Google Scholar 

  • Yoshioka, T., Horie, H., Takenaka, T., Inoue, H., Inomata, K. 1979. Immunofluorescent staining of tubulin in the squid giant axon.Proc. Jpn. Acad. 55B:380–385

    Google Scholar 

  • Yoshioka, T., Pant, H.C., Tasaki, I., Baumgold, J., Matsumoto, G., Gainer H. 1978. An approach to the study of intracellular proteins related to the excitability of the squid giant axon.Biochim. Biophys. Acta 538:616–626

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terakawa, S., Nakayama, T. Are axoplasmic microtubules necessary for membrane excitation?. J. Membrain Biol. 85, 65–77 (1985). https://doi.org/10.1007/BF01872006

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872006

Key Words

Navigation