Skip to main content
Log in

Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as a fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, R., De Weer, P. 1978. Electric current generated by squid axon: External K and internal ADP effects.Am. J. Physiol. 44:389–400

    Google Scholar 

  • Abeywardena, M.Y., Allen, Th.M., Charnock, J.S. 1983. Lipid-protein interactions of reconstituted membrane-associated adenosine triphosphatases. Use of a gel-filtration procedure to examine phospholipid-activity relationships.Biochim. Biophys. Acta 729:62–74

    PubMed  Google Scholar 

  • Anner, B.M. 1980. Ratio of Na: K transport in reconstituted sodium pump vesicles.Biochem. Biophys. Res. Commun. 94:1233–1241

    PubMed  Google Scholar 

  • Anner, B.M. 1981. A K-selective cation channel formed by Na,K-ATPase in liposomes.Biochem. Int. 2:365–371

    Google Scholar 

  • Anner, B.M., Lane, L.K., Schwartz, A., Pitts, B.J.R. 1977. A reconstituted Na++K+ pump in liposomes containing purified (Na++K+)-ATPase from kidney medulla.Biochim. Biophys. Acta 467:340–345

    PubMed  Google Scholar 

  • Anner, B.M., Marcus, M.M., Moosmayer, M. 1984a. Reconstitution of Na,K-ATPase.In: Enzymes, Receptors and Carriers of Biomembranes. pp. 81–96. Springer-Verlag, Heidelberg

    Google Scholar 

  • Anner, B.M., Moosmayer, M. 1981. Preparation of Na,K-ATPase-containing liposomes with predictable transport properties by a procedure relating the Na,K-transport capacity to the ATPase activity.J. Biochem. Biophys. Methods 5:299–306

    Google Scholar 

  • Anner, B.M., Moosmayer, M. 1982. On the kinetics of the Na:K exchange in the initial and final phase of sodium pump activity in liposomes.J. Membr. Sci. 11:27–37

    Google Scholar 

  • Anner, B.M., Robertson, J.D., Ting-Beall, H.P. 1984b. Characterization of (Na++K+)-ATPase liposomes. I. Effect of enzyme concentration and modification of liposome size, intramembrane particle formation and Na+,K+-transport.Biochim. Biophys. Acta 773:253–261

    PubMed  Google Scholar 

  • Bartlett, G. 1959. Phosphorous assay in column chromatography.J. Biol. Chem. 234:466–468

    PubMed  Google Scholar 

  • Beeler, T.J., Farmen R.H., Martonosi, A.N. 1981. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum.J. Membrane Biol. 62:113–137

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of carbon chain length and temperature.J. Membrane Biol. 14:339–364

    Google Scholar 

  • Brotherus, J.R., Jacobsen, L., Jørgensen, P.L. 1983. Soluble and enzymatically stable (Na++K+)-ATPase from mammalian kidney consisting predominantly of protomer αβ-units. Preparation, assay and reconstitution of active Na+,K+ transport.Biochim. Biophys. Acta 731:290–303

    PubMed  Google Scholar 

  • Cantley, L.C. 1981. Structure and mechanism of the (Na,K)-ATPase.Curr. Top. Bioenerg. 11:201–237

    Google Scholar 

  • Carruthers, A., Melchior, D.L. 1983. Studies of the relationship between bilayer water permeability and bilayer physical state.Biochemistry 22:5797–5807

    Google Scholar 

  • Cornelius, F., Skou, J.C. 1984. Reconstitution of (Na++K+)-ATPase into phospholipid vesicles with full recovery of its specific activity.Biochim. Biophys. Acta 772:357–373

    PubMed  Google Scholar 

  • Dixon, J.F., Hokin, L.E. 1980. The reconstituted (Na,K)-ATPase is electrogenic.J. Biol. Chem. 255:10681–10686

    PubMed  Google Scholar 

  • Forbush, B., III, 1984. An apparatus for rapid kinetic analysis of isotopic efflux from membrane vesicles and of ligand dissociation from membrane proteins.Anal. Biochem. (in press)

  • Forgac, M., Chin, G. 1982. Na+ transport by the (Na+)-stimulated adenosine triphosphatase.J. Biol. Chem. 257:5652–5655

    PubMed  Google Scholar 

  • Glitsch, H.G. 1982. Electrogenic Na pumping in the heart.Annu. Rev. Physiol. 44:389–400

    Google Scholar 

  • Goldin, S.M., Tong, S.W. 1974. Reconstitution of active transport catalyzed by the purified sodium and potassium ion-stimulated adenosine triphosphatase from canine renal medulla.J. Biol. Chem. 249:5907–5915

    PubMed  Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37–60

    Article  Google Scholar 

  • Hilden, S., Rhee, H.M., Hokin, L.E. 1974. Sodium transport by phospholipid vesicles containing purified sodium and potassium ion-activated adenosine triphosphatase.J. Biol. Chem. 249:7432–7440

    PubMed  Google Scholar 

  • Hoffman, J.F., Kaplan, J.H., Callahan, T.J. 1979. The Na:K pump in red cells is electrogenic.Fed. Proc. 38:2440–2441

    PubMed  Google Scholar 

  • Hoffman, J.F., Laris, P.C. 1974. Determination of membrane potentials in human andAmphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519–552

    Google Scholar 

  • Jackson, R.L., Verkleij, A.J., Zoelen, E.J.J. van, Lane, L.K., Schwartz, A., Deenen, L.L.M. van 1980. Asymmetric incorporation of Na+,K+-ATPase into phospholipid vesicles.Arch. Biochem. Biophys. 200:269–278

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1974. Isolation of (Na++K+)-ATPase.Methods Enzymol. 32:277–290

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1982. Mechanism of the Na+,K+ pump. Protein structure and conformations of the pure (Na++K+)-ATPase.Biochim. Biophys. Acta 694:27–68

    PubMed  Google Scholar 

  • Karlish, S.J.D., Lieb, W.R., Stein, W.D. 1982. Combined effects of ATP and phosphate on rubidium exchange mediated by Na−K-ATPase reconstituted into phospholipid vesicles.J. Physiol. (London) 328:333–350

    Google Scholar 

  • Karlish, S.J.D., Pick, U. 1981. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.J. Physiol. (London) 312:505–529

    Google Scholar 

  • Krasne, S. 1983. Interactions of voltage-sensing dyes with membranes. III. Electrical properties induced by merocyanine 540.Biophys. J. 44:305–314

    PubMed  Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458–466

    PubMed  Google Scholar 

  • Lawaczeck, R. 1979. On the permeability of water molecules across vesicular lipid bilayers.J. Membrane Biol. 51:229–261

    Google Scholar 

  • Lederer, W.J., Nelson, M.T. 1984. Sodium pump stoichiometry determined by simultaneous measurements of sodium efflux and membrane current in barnacle.J. Physiol. (London) 348:665–677

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagents.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Lüdi, H., Oetliker, H., Brodbeck, U. 1981. Use of a potentiometric cyanine dye in the study of reconstituted membrane proteins.In. Membrane Proteins. A. Azzi, U. Brodbeck, and P. Zahler, editors. pp. 209–219. Springer, Berlin

    Google Scholar 

  • Lüdi, H., Oetliker, H., Brodbeck, U., Ott, P., Schwendimann, B., Fulpius, B.W. 1983. Reconstitution of pure acetylcholine receptor in phospholipid vesicles and comparison with receptor-rich membranes by the use of a potentiometric dye.J. Membrane Biol. 74:75–84

    Google Scholar 

  • McLaughlin, S.A. 1977. Electrostatic potentials at membrane-solution interfaces.Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  • Milsmann, M.H.W., Schwendener, R.A., Weder, H.G. 1978. The preparation of large single bilayer liposomes by a fast and controlled dialysis.Biochim. Biophys. Acta 512:147–155

    PubMed  Google Scholar 

  • Oetliker, H. 1980. Studies on the mechanism causing optical excitation-contraction coupling signals in skeletal muscle.J. Physiol. (London) 305:26–32

    Google Scholar 

  • Oetliker, H. 1981. Divalent cation concentration-dependent fluorescence of isolated sarcoplasmic reticulum vesicles stained with indodicarbocyanine.J. Physiol. (London) 318:11–12

    Google Scholar 

  • Oetliker, H. 1982. An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle.J. Muscle Res. Cell Motil. 3:247–272

    PubMed  Google Scholar 

  • Post, R.L., Sen, A.K., Rosenthal A.S. 1965. A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes.J. Biol. Chem. 240:1437–1444

    PubMed  Google Scholar 

  • Racker, E., Fisher, L.W. 1975. Reconstitution of an ATP-dependent sodium pump with an ATPase from electric eel and pure phospholipids.Biochem. Biophys. Res. Commun. 67:1144–1150

    PubMed  Google Scholar 

  • Rhoden, V., Goldin, S.M. 1979. Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis.Biochemistry 18:4173–4176

    PubMed  Google Scholar 

  • Robinson, J.D. 1983. Kinetic analyses and the reaction mechanism of the Na,K-ATPase.In: Structure, Mechanism and Function of the Na/K Pump. J. F. Hoffman and B. Forbush. III, editors.Curr. Top. Membr. Transp. 19:485–512

  • Robinson, J.D., Flashner, M.S. 1979. The (Na++K+)-activated ATPase. Enzymatic and transport properties.Biochim. Biophys. Acta 549:145–176

    PubMed  Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.H. 1977. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurements of membrane potential.J. Membrane Biol. 33:141–183

    Google Scholar 

  • Schuurmans-Stekhoven, F., Bonting, S.L. 1981. Transport of adenosin triphosphatases: Properties and function.Physiol. Rev. 61:1–76

    Google Scholar 

  • Schwartz, A., Nagano, K., Nakao, M., Lindenmayer, G.E., Allen, J.C. 1971. The sodium-and potassium-activated adenosinetriphosphatase system.Meth. Pharmacol. 1:361–388

    Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, Ch.H., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315–3329

    PubMed  Google Scholar 

  • Skou, J.C. 1975. The (Na++K+) activated enzyme system and its relationship to transport of sodium and potassium.Q. Rev. Biophys. 7:401–431

    Google Scholar 

  • Skriver, E., Maunsbach, A.B., Anner, B.M., Jørgensen, P.L. 1980a. Electron microscopy of phospholipid vesicles reconstituted with purified renal Na,K-ATPase.Cell Biol. Int. Rep. 4:585–591

    PubMed  Google Scholar 

  • Skriver, E., Maunsbach, A.B., Jørgensen, P.L. 1980b. Ultrastructure of Na,K-transport vesicles reconstituted with purified renal Na,K-ATPase.J. Cell. Biol. 86:746–754

    PubMed  Google Scholar 

  • Stark, G., Benz, R. 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. Experimental studies to a previously proposed model.J. Membrane Biol. 5:133–153

    Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47–68

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apell, H.J., Marcus, M.M., Anner, B.M. et al. Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase. J. Membrain Biol. 85, 49–63 (1985). https://doi.org/10.1007/BF01872005

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872005

Key Words

Navigation