Skip to main content
Log in

On the red blood cell Ca2+-pump: An estimate of stoichiometry

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Efflux of Ca2+ from reversibly hemolyzed human red blood cell ghosts was determined by a Ca2+ selective electrode, by atomic absorption spectroscopy, and by the use of45Ca. Hydrolysis of ATP was determined by measurement of inorganic phosphate (Pi). At 25°C, ghosts loaded with CaCl2, MgCl2, Na2ATP, and Tris buffer (pH 7.4) extruded Ca2+, with mean rates ranging from 58.8±3.5 (sd) to 74.7±8.2 (sd) μmoles·liter ghosts−1·min depending on the method of Ca2+ determination. The ratio of Ca2+ transported to Pi released in the presence of ouabain without correction for background ATP splitting was 0.83, 0.83, and 0.80, respectively, for the three methods of Ca2+ determination. Correction for the ATPase activity not associated with Ca2+ transport resulted in a ratio of 0.91:1. In other experiments, the use of La3+ to inhibit the Ca2+-pump allowed an estimate of the ATPase activity associated with Ca2+ extrusion. In the presence of various concentrations of La3+, the ratio of Ca2+ pumped to Pi liberated was 0.86 or 1.02, depending on the method of Ca2+ determination. It is concluded that the stoichiometry of the Ca2+-pump of the RBC plasma membrane is one Ca2+ pumped per ATP hydrolyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bygrave, F.L. 1966. The effects of calcium ions on the glycolytic activity of Ehrlich ascitestumour cells.Biochem. J. 101:480

    PubMed  Google Scholar 

  • Duhn, J., Deuticke, B., Gerlach, E. 1968. Metabolism of 2,3-diphosphoglycerate and glycolysis in human red blood cells under the influence of dipyridamole and inorganic sulfur compounds.Biochim. Biophys. Acta 170:452

    PubMed  Google Scholar 

  • Fiske, C.H., SubbaRow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375

    Google Scholar 

  • Gilman, A., Philips, F.S., Koelle, E.S., Allen, R.P., St. John, E. 1946. The metabolic reduction and nephrotoxic action of tetrathionate in relation to a possible interaction with sulfhydryl compounds.Am. J. Physiol. 147:115

    Google Scholar 

  • Larsen, F.L., Vincenzi, F.F. 1977. Lanthanum inhibition of plasma membrane calcium transport.Proc. West. Pharmacol. Soc. 20:319

    PubMed  Google Scholar 

  • Lee, K.S., Shin, B.C. 1969. Studies on the active transport of calcium in human red cells.J. Gen. Physiol. 54:713

    PubMed  Google Scholar 

  • Madeira, V.M.C. 1975. A rapid and ultrasensitive method to measure Ca++ movements across biological membranes.Biochem. Biophys. Res. Commun. 64:870

    PubMed  Google Scholar 

  • Olson, E.J., Cazort, R.J. 1969. Active calcium and strontium transport in human erythrocyte ghosts.J. Gen. Physiol. 53:311

    PubMed  Google Scholar 

  • Quist, E.E., Roufogalis, B.D. 1975a. Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor.FEBS Lett. 50:135

    PubMed  Google Scholar 

  • Quist, E.E., Roufogalis, B.D. 1975b. Calcium transport in human erythrocytes.Arch. Biochem. Biophys. 168:240

    PubMed  Google Scholar 

  • Roy, A.B., Trudinger, P.A. 1970. The Biochemistry of Inorganic Compounds of Sulphur. Ch. 2, p. 19. Cambridge University Press, London

    Google Scholar 

  • Sarkadi, B., Szász, I., Gárdos, G. 1976. The use of ionophores of rapid loading of human red cells with radioactive cations for cation-pump studies.J. Membrane Biol. 26:357

    Google Scholar 

  • Sarkadi, B., Szász, I., Gerlóczy, A., Gárdos, G. 1977. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells.Biochim. Biophys. Acta 464:93

    PubMed  Google Scholar 

  • Schatzmann, H.J. 1966. ATP-dependent Ca++ extrusion from human red cells.Experientia 22:364

    PubMed  Google Scholar 

  • Schatzmann, H.J. 1973. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells.J. Physiol. (London) 235:551

    Google Scholar 

  • Schatzmann, H.J. 1975. Active calcium transport and Ca2+-activated ATPase in human red cells.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. p. 125. Academic Press, New York

    Google Scholar 

  • Schatzmann, H.J., Vincenzi, F.F. 1969. Calcium movements across the membrane of human red cells.J. Physiol. (London) 201:369

    Google Scholar 

  • Trudinger, P.A. 1965. Effect of thiol-binding reagents on the metabolism of thiosulfate and tetrathionate byThiobacillus neapolitanus.J. Bacteriol. 89:617

    PubMed  Google Scholar 

  • Wolf, H.U. 1972. Studies on the Ca2+-dependent ATPase of human erythrocyte membranes. Effects of Ca2+ and H+.Biochim. Biophys. Acta 266:361

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, F.L., Hinds, T.R. & Vincenzi, F.F. On the red blood cell Ca2+-pump: An estimate of stoichiometry. J. Membrain Biol. 41, 361–376 (1978). https://doi.org/10.1007/BF01872000

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872000

Keywords

Navigation