Skip to main content
Log in

Ion modulation of membrane permeability: Effect of cations on intact cells and on cells and phospholipid bilayers treated with pore-forming agents

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Leakage of ions (Na+, K+) and phosphorylated metabolites (phosphorylcholine, 2-deoxyglucose 6-phosphate) through membrane lesions in intact cells or in cells modified by ‘pore-forming’ agent has been studied. Leakage from intact cells isinduced by protons and by divalent cations such as Cu2+, Cd2+ or Zn2+. Leakage from agent-modified cells—or across phospholipid bilayers modified by agent—isprevented by low concentrations of the same cations and by higher concentrations of Ca2+, Mn2+ or Ba2+; Mg2+, dimethonium, spermine, or spermidine are virtually ineffective. The relative efficacy of a particular cation (e.g. Ca2+) depends more on cell type than on the nature of the pore-forming agent. The predominant effect is on binding of cation to specific sites, not on surface charge. Surface charge, on the other hand, does affect leakage from agent-modified cells in that suspension in nonionic media reduces leakage, which can be restored by increasing the ionic strength: univalent (Na+, K+, Rb+, NH +4 ) and divalent (Mg2+, dimethonium) cations are equally effective; addition of protons or divalent cations such as Zn2+ to this system inhibits leakage. From this and other evidence here presented it is concluded that leakage across membranes is modulated by the presence of endogenous anionic components: when these are in the ionized state, leakage is favored; when unionized (as a result of protonation) or chelated (by binding to divalent cation), leakage is prevented. It is suggested that such groups are exposed at the extracellular face of the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahnert-Hillger, G., Bhakdi, S., Gratzl, M. 1985. Minimal requirements for exocytosis. A study using PC12 cells permeabilized with staphylococcal α-toxin.J. Biol. Chem. 260:12730–12734

    Google Scholar 

  • Al-Nasser, I., Crompton, M. 1986. The reversible Ca2+-induced permeabilization of rat liver mitochondria.Biochem. J. 239:19–29

    Google Scholar 

  • Arbuthnott, J.P. 1983. Host damage from bacterial toxins.Philos. Trans. R. Soc. London B 303:149–165

    Google Scholar 

  • Avigad, L.S., Bernheimer, A.W. 1976. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents.Infect. Immun. 13:1378–1381

    Google Scholar 

  • Avruch, J., Wallach, D.F.H. 1971. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells.Biochim. Biophys. Acta 233:334–347

    Google Scholar 

  • Bangham, A.D., Flemans, R., Heard, D.H., Seaman, G.V.F. 1958. An apparatus for microelectrophoresis of small particles.Nature (London) 182:642–644

    Google Scholar 

  • Barrowman, M.M., Cockroft, S., Gomperts, B.D. 1986. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils.Nature (London) 319:504–507

    Google Scholar 

  • Bashford, C.L., Alder, G.M., Menestrina, G., Micklem, K.J., Murphy, J.J., Pasternak, C.A. 1986. Membrane damage by haemolytic viruses, toxins, complement and other cytotoxic agents: A common mechanism blocked by divalent cations.J. Biol. Chem. 261:9300–9308

    Google Scholar 

  • Bashford, C.L., Alder, G.M., Patel, K., Pasternak, C.A. 1984. Common action of certain viruses, toxins, and activated complement: Pore formation and its prevention by extracellular Ca2+.Biosci. Rep. 4:797–805

    Google Scholar 

  • Bashford, C.L., Micklem, K.J., Pasternak, C.A. 1985. Sequential onset of permeability changes in mouse ascites cells induced by Sendai virus.Biochim. Biophys. Acta 814:247–255

    Google Scholar 

  • Bateman, J.B., Zellner, A. 1956. The electrophoretic properties of red blood cells: The effect of changing pH and ionic strength.Arch. Biochem. Biophys. 60:44–51

    Google Scholar 

  • Bettger, W.J., O'Dell, B.L. 1981. A critical physiological role of zinc in the structure and function of biomembranes.Life Sci. 28:1425–1438

    Google Scholar 

  • Bhakdi, S., Tranum-Jensen, J. 1984. Mechanism of complement cytolysis and the concept of channel-forming proteins.Philos. Trans. R. Soc. London B 306:311–324

    Google Scholar 

  • Boyle, M.D.P., Largone, J.J., Borsos, T. 1979. Studies on the terminal stages of immune hemolysis. IV. Effect of metal salts.J. Immunol. 122:1209–1213

    Google Scholar 

  • Burnet, F.M. 1949. Haemolysis by Newcastle disease virus.Nature (London) 164:1008

    Google Scholar 

  • Cameron, J.M., Clemens, M.J., Gray, M.A., Menzies, D.E., Mills, B.J., Warren, A.P., Pasternak, C.A. 1986. Increased sensitivity of virus-infected cells to inhibition of protein synthesis does not correlate with changes in plasma membrane permeability.Virology 155:534–544

    Google Scholar 

  • Campbell, A.K., Daw, R.A., Hallett, M.B., Luzio, J.P. 1981. Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement.Biochem. J. 194:551–560

    Google Scholar 

  • Campbell, A.K., Morgan, B.P. 1985. Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack.Nature (London) 317:164–166

    Google Scholar 

  • Carney, D.F., Koski, C.L., Shin, M.L. 1985. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: The rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9.J. Immunol. 134:1804–1809

    Google Scholar 

  • Chvapil, M. 1976. Effect of zinc on cells and biomembranes.Med. Clin. N. Am. 60:799–812

    Google Scholar 

  • Clague, M.J., Cherry, R.J. 1986. Immobilization of band 3 protein and inhibition of melittin action by divalent cations.Biochem. Soc. Trans. 14:883–884

    Google Scholar 

  • Cullis, P.R., Kruijff, B. de 1979. Lipid polymorphism and the functional roles of lipids in biological membranes.Biochim. Biophys. Acta 599:399–420

    Google Scholar 

  • Dankert, J.R., Esser, A.F. 1985. Proteolytic modification of human complement protein C9: Loss of poly (C9) and circular lesion formation without impairment of function.Proc. Natl. Acad. Sci. USA 82:2128–2132

    Google Scholar 

  • Dawson, R.M.C., Elliott, D.C., Elliott, W.H., Jones, J.M. 1969. Data for Biochemical Research, 2nd Ed., pp. 484–485. Oxford University Press, Oxford

    Google Scholar 

  • Donath, E., Voight, A. 1986. Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model.Biophys. J. 49:493–499

    Google Scholar 

  • Dufton, M.J., Cherry, R.J., Coleman, J.W., Stanworth, D.R. 1984. The capacity of basic peptides to trigger exocytosis from mast cells correlates with their capacity to immobilize band 3 proteins in erythrocyte membranes.Biochem. J. 223:67–71

    Google Scholar 

  • Dunn, L.A., Holz, R.W. 1983. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.J. Biol. Chem. 258:4989–4993

    Google Scholar 

  • Eby, G.A., Davis, D.R., Halcombe, W.W. 1984. Reduction in duration of common colds by zinc gluconate lozenges in a double-blind study.Antimicrob. Agents Chemother.25:20–24

    Google Scholar 

  • Edmonds, D.T. 1981. A calculation of the current-voltage characteristic of a voltage-controlled model membrane ion channel.Proc. R. Soc. London B. 214:125–136

    Google Scholar 

  • Edmonds, D.T. 1984. Electrostatic models for ion channels and pumps.In: The Molecular Basis of Movement Through Membranes. C.A. Pasternak and P.J. Quinn, editors.Biochem. Soc. Symp. 50:247–264

  • Esser, A.F. 1986. C9-mediated cytotoxicity and the function of poly(C9).UCLA Symp. New Ser. 46

  • Esser, A.F., Bartholomew, R.M., Jensen, F.C., Muller-Eberhard, H.J. 1979. Disassembly of viral membranes by complement independent of channel formation.Proc. Natl. Acad. Sci. USA 76:5843

    Google Scholar 

  • Frankenhauser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218–244

    Google Scholar 

  • French, R.J., Krueger, B.K., Worley, J.F. 1986. From brain to bilayer: Sodium channels from rat neurons incorporated into planar lipid membranes.In: Ionic Channels in Cells and Model Systems. R. Latorre, editor. pp. 273–290. Plenum, New York

    Google Scholar 

  • Furchgott, R.F., Ponder, E. 1941. Electrophoretic studies on human red blood cells.J. Gen. Physiol. 24:447–457

    Google Scholar 

  • Gambale, F., Menini, A., Rauch, G. 1987. Effects of calcium on the gramicidin A single channel in phosphatidylserine membranes. Screening and blocking.Eur. Biophys. J. 14:369–374

    Google Scholar 

  • Gomperts, B.D., Baldwin, J.M., Micklem, K.J. 1983. Rat mast cells permeabilized with Sendai virus secrete histamine in response to Ca2+ buffered in the micromolar range.Biochem. J. 210:737–745

    Google Scholar 

  • Gotze, O., Haupt, I., Fischer, H. 1968. Immune haemolysis: reaction of the terminal complement component.Nature (London) 217:1165–1167

    Google Scholar 

  • Graham, J.M., Pasternak, C.A., Wilson, R.B.J., Alder, G.M., Bashford, C.L. 1986. Measurement of the effect of cations on the electrophoretic mobility of Lettre cells and human erythrocytes using free flow electrophoresis.Electrophoresis 7:Proc. Int. Electrophoresis Soc., pp. 77–85

    Google Scholar 

  • Gray, M.A., Austin, S.A., Clemens, M.J., Rodrigues, L., Pasternak, C.A. 1983. Protein synthesis in Semliki Forest virus-infected cells is not controlled by permeability changes.J. Gen. Virol. 64:2631–2640

    Google Scholar 

  • Hannig, K., Heidrich, H.G. 1974. The use of continuous preparative free flow electrophoresis for dissociating cell fractions and isolation of membranous components.Meth. Enzymol. 31:746–761

    Google Scholar 

  • Harshman, S., Sugg, N. 1985. Effect of calcium ions on staphylococcal alpha toxin-induced hemolysis of rabbit erythrocytes.Infect. Immun. 47:37–40

    Google Scholar 

  • Hauser, H., Finer, E.G., Darke, A. 1977. Crystalline anhydrous Ca-phosphatidylserine bilayers.Biochem. Biophys. Res. Commun. 76:267–274

    Google Scholar 

  • Hauser, H., Shipley, G.G. 1984. Interactions of divalent cations with phosphatidylserine bilayer membranes.Biochemistry 23:34–41

    Google Scholar 

  • Heard, D.H., Seaman, G.V.F. 1960. The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane.J. Gen. Physiol. 43:635–654

    Google Scholar 

  • Henry, D.C. 1938. A source of error in micro-cataphoretic measurements with a cylindrical bore cell.J. Chem. Soc. 997–999

  • Impraim, C.C., Foster, K.A., Micklem, K.J., Pasternak, C.A. 1980. Nature of virally-mediated changes in membrane permeability to small molecules.Biochem. J. 186:847–860

    Google Scholar 

  • Impraim, C.C., Micklem, K.J., Pasternak, C.A. 1979. Calcium, cells and virus: Alterations caused by paramyxoviruses.Biochem. Pharmacol. 28:1963–1969

    Google Scholar 

  • Kabat, E.A., Mayer, M.M. 1961. Experimental Immunochemistry. pp. 133–240. Charles Thomas, Springfield, Illinois

    Google Scholar 

  • Knutton, S., Jackson, D., Graham, J.M., Micklem, K.J., Pasternak, C.A. 1976. Microvilli and cell swelling.Nature (London) 262:52–54

    Google Scholar 

  • Levine, S., Levine, M., Sharp, K.A., Brooks, D.E. 1983. Theory of the electrokinetic behavior of human erythrocytes.Biophys. J. 42:127–135

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    Google Scholar 

  • McCartney, C., Arbuthnott, J.P. 1978. Mode of action of membrane-damaging toxins produced by Staphylococci.In: Bacterial Toxins and Cell Membranes. J. Jeljaszeiwicz, and T. Wadstrom, editors. pp. 89–127. Academic, New York

    Google Scholar 

  • McLaughlin, S.G., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667–687

    Google Scholar 

  • McLaughlin, A., Eng, W.K., Vaio, G., Wilson, T., McLaughlin, S. 1983. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.J. Membrane Biol. 76:183–193

    Google Scholar 

  • McNiven, A.C., Owen, P., Arbuthnott, J.P. 1972. Multiple forms of staphylococcal alpha-toxin.J. Med. Microbiol. 5:113–122

    Google Scholar 

  • Masuda, A., Goshima, K. 1980. The role of extracellular calcium ions in HVJ (sendai virus)-induced cell fusion.Biochim. Biophys. Acta 599:596–609

    Google Scholar 

  • Meech, R.W. 1976. Intracellular calcium and the control of membrane permeability.In: Calcium in Biological Systems. C.J. Duncan, editor. pp. 161–191. Cambridge University Press, Cambridge

    Google Scholar 

  • Menestrina, G. 1986. Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations.J. Membrane Biol. 90:177–190

    Google Scholar 

  • Micklem, K.J., Nyaruwe, A., Alder, G.M., Pasternak, C.A. 1984. The effect of Ca2+ on virus-cell fusion and permeability changes.Cell Calcium 5:537–550

    Google Scholar 

  • Miller, C. 1983. Integral membrane channels: Studies in model membranes.Physiol. Rev. 63:1209–1242

    Google Scholar 

  • Miller, M.R., Castellot, J.J., Pardee, A.B. 1978. A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation.Biochemistry 17:1073–1080

    Google Scholar 

  • Miller, M.R., Castellot, J.J., Pardee, A.B. 1979. A general method for permeabilizing monolayer and suspension culture cells.Exp. Cell Res. 120:421–425

    Google Scholar 

  • Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Natl. Acad. Sci. USA 69:3561–3566

    Google Scholar 

  • Morgan, B.P., Sewry, C.A., Siddle, K., Luzio, J.P., Campbell, A.K. 1984. Immunolocalization of complement component C9 on necrotic and non-necrotic muscle fibres in myositis using monoclonal antibodies: A primary role for complement in autoimmune cell damage.Immunology 52:181–188

    Google Scholar 

  • Op den Kamp, J.A.F. 1979. Lipid asymmetry in membranes.Annu. Rev. Biochem. 48:47–71

    Google Scholar 

  • Pasquale, L., Winiski, A., Oliva, C., Vaio, G., McLaughlin, S. 1986. An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO ++2 and tetracaine on the electrophoretic mobility of bilayer membranes and human erythocytes.J. Gen. Physiol. 88:697–718

    Google Scholar 

  • Pasternak, C.A., 1987a. Viruses as toxins-with special reference to paramyxoviruses.Arch. Virol. 93:169–184

    Google Scholar 

  • Pasternak, C.A., 1987b. A novel form of host defence: Membrane protection by Ca2+ and Zn2+.Biosci. Rep. 7:81–91

    Google Scholar 

  • Pasternak, C.A., Alder, G.M., Bashford, C.L., Buckley, C.L., Micklem, K.J., Patel, K. 1985a. Cell damage by viruses, toxins and complement: Common features of pore-formation and its inhibition by Ca2+.In: The Molecular Basis of Movement Through Membranes C.A. Pasternak and P.J. Quinn, editors.Biochem. Soc. Symp. 50:247–264

  • Pasternak, C.A., Bashford, C.L., Micklem, K.J. 1985b. Ca2+ and the interaction of pore-formers with membranes.Proc. Int. Symp. Struct. Interactions, Suppl. J. Biosci. 8:273–291

    Google Scholar 

  • Pasternak, C.A., Micklem, K.J. 1973. Permeability changes during cell fusion.J. Membrane Biol. 14:293–303

    Google Scholar 

  • Pasternak, C.A., Micklem, K.J. 1974a. The biochemistry of virus-induced cell fusion. Changes in membrane integrity.Biochem. J. 140:405–411

    Google Scholar 

  • Pasternak, C.A., Micklem, K.J. 1974b. Virally-mediated membrane changes: Inverse effects on transport and diffusion.Biochem. J. 144:593–595

    Google Scholar 

  • Patel, K., Pasternak, C.A. 1985. Permeability changes elicited by influenza and Sendai virus: Separation of fusion and leakage by pH jump experiments.J. Gen. Virol. 66:767–775

    Google Scholar 

  • Poste, G., Pasternak, C.A. 1978. Mechanisms of virus-induced cell fusion.In: Cell Surface Reviews 5. G. Poste and G.L. Nicolson, editors. pp. 306–349. North Holland Publishing, Amsterdam, New York, Oxford

    Google Scholar 

  • Prasad, A.S. 1978. Trace elements and iron in human metabolism. pp. 251–346. John Wiley & Sons, Chichester

    Google Scholar 

  • Prince, R.C., Gunson, D.E., Scarpa, A. 1985. Sting like a bee! The ionophoric properties of melittin.TIBS 10:99

    Google Scholar 

  • Ramm, L.E., Whitlow, M.B., Mayer, M.M. 1982. Transmembrane channel formation by complement: Functional analysis of the number of C5b6, C7, C8 and C9 molecules required for a single channel.Proc. Natl. Acad. Sci. USA 79:4751–4755

    Google Scholar 

  • Ramm, L.E., Whitlow, M.B., Koski, C.L., Shin, M.L., Mayer, M.M. 1983. Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: Temperature dependence of the elimination rate.J. Immunol. 131:1411–1415

    Google Scholar 

  • Ramm, L.E., Whitlow, M.B., Mayer, M.M. 1985. The relationship between channel size and the number of C9 molecules in the C5b-9 complex.J. Immunol. 134:2594–2599

    Google Scholar 

  • Sandvig, K., Olsnes, S. 1982. Entry of the toxic proteins abrin, modeccin, ricin and diphtheria toxins into cells. I. Requirement for calcium.J. Biol. Chem. 257:7495–7503

    Google Scholar 

  • Sandvig, K., Olsnes, S. 1985. Effect of the chaotropic ions thiocyanate and perchlorate on the entry of ricin into Vero cells.Biochem. J. 228:521–523

    Google Scholar 

  • Schreiber, A.D. 1983. Paraoxysmal nocturnal hemoglobinuria revisited.N. Engl. J. Med. 309:723–725

    Google Scholar 

  • Schulz, I., Heil, K. 1979. Ca2+ control of electrolyte permeability in plasma membrane vesicles from cat pancreas.J. Membrane Biol. 46:41–70

    Google Scholar 

  • Schwartz, W., Passow, H. 1983. Ca2+-activated K+ channels in erythrocytes and excitable cells.Annu. Rev. Physiol. 45:359–374

    Google Scholar 

  • Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583–655

    Google Scholar 

  • Sillen, L.G., Martell, A.E., editors. 1964. Stability Constants of Metal Ion Complexes.Chem. Soc. Publ. 17, London

  • Sims, P.J., Lauf, P.K. 1978. Steady-state analysis of tracer exchange across the C5b-9 complement lesion in a biological membrane.Proc. Natl. Acad. Sci. USA 75:5669–5673

    Google Scholar 

  • Sims, P.J., Lauf, P.K. 1980. Analysis of solute diffusion across the C5b-9 membrane lesion of complement: Evidence that individual C5b-9 complexes do not function as discrete uniform pores.J. Immunol. 125:2617–2625

    Google Scholar 

  • Snyder, S.L., Walker, R.I. 1976. Inhibition of lethality in endotoxin-challenged mice treated with zinc chloride.Infect. Immun. 13:998–1000

    Google Scholar 

  • Taylor, R.E., Armstrong, C.M., Bezanilla, F. 1976. Block of sodium channels by external calcium ions.Biophys. J. 16:27a

    Google Scholar 

  • Tocco-Bradley, R., Kluger, M. 1984. Zinc concentration and survival in rats infected withS. typhimurium.Infect. Immun. 45:332–338

    Google Scholar 

  • Underwood, E.J. 1977. Trace Elements in Human and Animal Nutrition. 4th Edition, pp. 196–242. Academic, New York

    Google Scholar 

  • Unwin, P.N.T., Ennis, P.D. 1984. Two configurations of a channel-forming membrane protein.Nature (London) 307:609–613

    Google Scholar 

  • Volsky, D.J., Loyter, A. 1978. Role of Ca2+ in virus-induced membrane fusion. Ca2+ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes.J. Cell Biol. 78:465–477

    Google Scholar 

  • Wilkins, D.J., Otterwill, R.H., Bangham, A.D. 1962. On the flocculation of sheep leukocytes: 1. Electrophoretic studies.J. Theor. Biol. 2:165–175

    Google Scholar 

  • Wilson, S.P., Kirshner, N. 1983. Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells.J. Biol. Chem. 258:4994–5000

    Google Scholar 

  • Wolf, H., Gingell, D. 1983. Conformational response of the glycocalyx to ionic strength and interaction with modified glass surfaces: Study of live red cells by interferometry.J. Cell Sci. 63:101–112

    Google Scholar 

  • Wolff, D., Vergara, C., Cecchi, X., Latorre, R. 1986. Characterization of large-unitary-conductance calcium-activated potassium channels in planar lipid bilayers.In: Ionic Channels in Cells and Model Systems. editor. R. Latorre, p. 307–322. Plenum, New York

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic block of sodium channels in nerve.J. Gen. Physiol. 61:687–708

    Google Scholar 

  • Wyke, A.M., Impraim, C.C., Knutton, S., Pasternak, C.A. 1980. Components involved in virally-mediated membrane fusion and permeability changes.Biochem. J. 190:625–638

    Google Scholar 

  • Wyn Jones, R.G., Lunt, O.R. 1967. The function of calcium in plants.Bot. Rev. 33:407–426

    Google Scholar 

  • Yamaizumi, M., Uchida, T., Okada, Y. 1979. Macromolecules can penetrate the host cell membrane during the early period of incubation with HVJ (Sendai virus).Virology 95:218–221

    Google Scholar 

  • Yamamoto, D., Yeh, J.Z., Narahashi, T. 1984. Voltage-dependent calcium block of normal and tetramethrin-modified sodium channels.Biophys. J. 45:337–344

    Google Scholar 

  • Yamamoto, K., Takahashi, M. 1975. Inhibition of the terminal stage of complement-mediated lysis (reactive lysis) by zinc and copper ions.Int. Arch. Allergy Appl. Immunol. 48:653–663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashford, C.L., Alder, G.M., Graham, J.M. et al. Ion modulation of membrane permeability: Effect of cations on intact cells and on cells and phospholipid bilayers treated with pore-forming agents. J. Membrain Biol. 103, 79–94 (1988). https://doi.org/10.1007/BF01871934

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871934

Key Words

Navigation