The Journal of Membrane Biology

, Volume 103, Issue 1, pp 29–40 | Cite as

Regulation of cytoplasmic pH of cultured bovine corneal endothelial cells in the absence and presence of bicarbonate

  • Thomas J. Jentsch
  • Christoph Korbmacher
  • Ilse Janicke
  • Dieter G. Fischer
  • Frank Stahl
  • Horst Helbig
  • Herwig Hollwede
  • Edward J. CragoeJr.
  • Svea K. Keller
  • Michael Wiederholt


Intracellular pH (pH i ) in confluent monolayers of cultured bovine corneal endothelial cells was determined using the pH-dependent absorbance of intracellularly trapped 5(and 6)carboxy-4′,5′-dimethylfluorescein. Steady-state pH was 7.05±0.1 in the nominal absence of bicarbonate, and 7.15±0.1 in the presence of 28mm HCO 3 /5% CO2. Following an acid load imposed by a NH4Cl prepulse, pH i was regulated in the absence of HCO 3 by a Na+-dependent process inhibitable to a large extent by 1mm amiloride and 0.1mm dimethylamiloride. In the presence of 28mm HCO 3 /5% CO2, this regulation was still dependent on Na+, but the inhibitory potency of amiloride was less. DIDS (1mm) partially inhibited this regulation in the presence, but not in the absence of bicarbonate. With cells pretreated with DIDS, amiloride was as effective in inhibiting recovery from acid load as in the absence of HCO 3 . The presence of intracellular Cl did not appreciably affect this recovery, which was still sensitive to DIDS in the absence of Cl. Removal of extracellular Na+ led to a fall of pH i , which was greatly attenuated in the absence of HCO 3 . This acidification was largely reduced by 1mm DIDS, but not by amiloride. Cl removal led to an intracellular alkalinization in the presence of HCO 3 . The presence of a Cl/HCO 3 exchanger was supported by demonstrating DIDS-sensitive36Cl uptake into confluent cell monolayers. Thus, bovine corneal endothelial cells express three processes involved in intracellular pH regulation: an amiloride-sensitive Na+/H antiport, a Na−HCO 3 symport and a Cl/HCO 3 exchange, the latter two being DIDS sensitive.

Key Words

intracellular pH sodium bicarbonate cotransport Na+/H+ antiport Cl/HCO3 exchange amiloride DIDS cornea endothelium cell culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, R.J. 1985. Mechanism of basolateral membrane H+/OH/HCO3 transport in the rat proximal convoluted tubule.J. Gen. Physiol. 86:613–636Google Scholar
  2. 2.
    Akiba, T., Alpern, R.J., Eveloff, J., Calamina, J., Warnock, D.G. 1986. Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles.J. Clin. Invest. 78:1472–1478Google Scholar
  3. 3.
    Aronson, P.S., Nee, J., Suhm, N.A. 1982. Modifier role of internal H+ in activating the Na+−H+ exchanger in renal microvillus membrane vesicles.Nature (London) 299: 161–163Google Scholar
  4. 4.
    Benos, D.J. 1982. Amiloride: A molecular probe for sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145Google Scholar
  5. 5.
    Biagi, B., Sohtell, M. 1986. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule.Am. J. Physiol. 250:F267-F272Google Scholar
  6. 6.
    Boron, W.F. 1983. Transport of H+ and of ionic weak acids and bases.J. Membrane Biol. 72:1–16Google Scholar
  7. 7.
    Boron, W.F. 1986. Intracellular pH regulation in epithelial cells.Annu. Rev. Physiol. 48:377–388Google Scholar
  8. 8.
    Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander. Na/H exchange.J. Gen. Physiol. 81:29–52Google Scholar
  9. 9.
    Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3 transport.J. Gen. Physiol. 81:53–94Google Scholar
  10. 10.
    Boron, W.F., Weer, P. de 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors.J. Gen. Physiol. 67:91–112Google Scholar
  11. 11.
    Chaillet, J.R., Amsler, K., Boron, W.F. 1986. Optical measurements of intracellular pH in single LLC-PK1 cells: Demonstration of Cl−HCO3 exchange.Proc. Natl. Acad. Sci. USA 83:522–526Google Scholar
  12. 12.
    Chaillet, J.R., Boron, W.F. 1985. Intracellular calibration of a pH-sensitive dye in isolated, perfused salamander proximal tubules.J. Gen. Physiol. 86:765–794Google Scholar
  13. 13.
    Cragoe, E.J., Jr. 1983. Diuretics chemistry, pharmacology, and medicine.In: Pyrazine Diuretics. Chap. 6, p. 303. John Wiley and Sons, New YorkGoogle Scholar
  14. 14.
    Curci, S., Debellis, L., Frömter, E. 1987. Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus.Pflueger's Arch. 408:497–504Google Scholar
  15. 15.
    Dikstein, S., Maurice, D.M. 1972. The metabolic basis to the fluid pump in the cornea.J. Physiol. (London) 221:29–41Google Scholar
  16. 16.
    Fischbarg, J., Lim, J.J. 1974. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium.J. Physiol. (London) 241:647–675Google Scholar
  17. 17.
    Grassl, S.M., Aronson, P.S. 1986. Na+/HCO3 co-transport in basolateral membrane vesicles isolated from rabbit renal cortex.J. Biol. Chem. 261:8778–8783Google Scholar
  18. 18.
    Grassl, S.M., Holohan, P.D., Ross, C.R. 1987. HCO3 transport in basolateral membrane vesicles isolated from rat renal cortex.J. Biol. Chem. 262:2682–2687Google Scholar
  19. 19.
    Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1983. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium.J. Membrane Biol. 71:227–240Google Scholar
  20. 20.
    Hodson, S. 1974. The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions.J. Physiol. (London) 236:271–302Google Scholar
  21. 21.
    Hodson, S., Miller, F. 1976. The bicarconate pump in the endothelium which regulates the hydration of the rabbit cornea.J. Physiol. (London) 263:563–577Google Scholar
  22. 22.
    Jentsch, T.J., Janicke, I., Sorgenfrei, D., Keller, S.K., Wiederholt, M. 1986. The regulation of intracellular pH in monkey kidney epithelial cells (BSC-1). Roles of Na+/H+ antiport Na+−HCO3−(NaCO3) symport, and Cl/HCO3 exchange.J. Biol. Chem. 261:12120–12127Google Scholar
  23. 23.
    Jentsch, T.J., Keller, S.K., Koch, M., Wiederholt, M. 1984. Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells.J. Membrane Biol. 81:189–204Google Scholar
  24. 24.
    Jentsch, T.J., Keller, S.K., Matthes, H., Wiederholt, M. 1985. Harmaline inhibits bicarbonate-sodium cotransport and K+-conductance in cultured bovine corneal endothelium.Pfluegers Arch. 403:R12 (Abstr.)Google Scholar
  25. 25.
    Jentsch, T.J., Koch, M., Bleckmann, H., Wiederholt, M. 1984. Effect of bicarbonate, pH, methazolamine and stilbenes on the intracellular potentials of cultured bovine corneal endothelial cells.J. Membrane Biol. 78:103–117Google Scholar
  26. 26.
    Jentsch, T.J., Matthes, H., Keller, S.K., Wiederholt, M. 1985. Anion dependence of electrical effects of bicarbonate and sodium on cultured bovine corneal endothelial cells.Pfluegers Arch. 403:175–185Google Scholar
  27. 27.
    Jentsch, T.J., Matthes, H., Keller, S.K., Wiederholt, M. 1986. Electrical properties of sodium bicarbonate symport in kidney epithelial cells (BSC-1).Am. J. Physiol. 251:F954-F968Google Scholar
  28. 28.
    Jentsch, T.J., Stahlknecht, T.R., Hollwede, H., Fischer, D.G., Keller, S.K., Wiederholt, M. 1985. A bicarbonate-dependent process inhibitable by disulfonic stilbenes and a Na+/H+ exchange mediate22Na+-uptake into cultured bovine corneal endothelium.J. Biol. Chem. 260:795–801Google Scholar
  29. 29.
    Jentsch, T.J., Schill, B.S., Schwartz, P., Matthes, H., Keller, S.K., Wiederholt, M. 1985. Kidney epithelial cells of monkey origin express a sodium bicarbonate cotransport. Characterization by22Na+ flux measurements.J. Biol. Chem. 260:15554–15560Google Scholar
  30. 30.
    Jentsch, T.J., Schwartz, P., Schill, B.S., Langner, B., Lepple, A.P., Keller, S.K., Wiederholt, M. 1986. Kinetie properties of sodium-bicarbonate (carbonate) symport in monkey kidney epithelial cells. Interactions between Na+, HCO3, and pH.J. Biol. Chem. 261:10673–10679Google Scholar
  31. 31.
    Kelly, G., Green, K. 1980. Influence of bicarbonate and CO2 on rabbit corneal transendothelial bicarbonate fluxes.Exp. Eye Res. 30:641–648Google Scholar
  32. 32.
    Kurtz, I., Golchini, K. 1987. Na+-independent Cl−HCO3 exchange in Madin-Darbin canine kidney cells. Role in intracellular pH regulation.J. Biol. Chem. 262:4516–4520Google Scholar
  33. 33.
    L'Allemain, G., Franchi, A., Cragoe, E., Jr., Pouysségur, J. 1984. Blockage of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series.J. Biol. Chem. 259:4313–4319Google Scholar
  34. 34.
    L'Allemain, G., Paris, S., Pouysségur, J. 1985. Role of Na+-dependent Cl/HCO3 exchange in regulation of intracellular pH in fibroblasts.J. Biol. Chem. 260:4877–4883Google Scholar
  35. 35.
    Lim, J.J., Ussing, H.H. 1982. Analysis of presteady-state Na+ fluxes across the rabbit corneal endothelium.J. Membrane Biol. 65:197–204Google Scholar
  36. 36.
    Murer, H., Hopfer, U., Kinne, R. 1976. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney.Biochem. J. 154:597–604Google Scholar
  37. 37.
    Olsnes, S., Tønnesen, T.I., Sandvig, K. 1986. pH-regulated anion antiport in nucleated mammalian cells.J. Cell Biol. 102:967–971Google Scholar
  38. 38.
    Roos, A., Boron, W.F. 1981. Intracellular pH.Physiol. Rev. 61:296–434Google Scholar
  39. 39.
    Rosoff, P.M., Cantley, L.C. 1985. Stimulation of the T3-T cell receptor-associated Ca2+ influx enhances the activity of the Na+/H+ exchanger in a leukemic human T cell line.J. Biol. Chem. 260:14053–14059Google Scholar
  40. 40.
    Rothenberg, P., Glaser, L., Schlesinger, P., Cassel, D. 1983. Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells.J. Biol. Chem. 258:12644–12653Google Scholar
  41. 41.
    Sabolič, I., Burckhardt, G. 1983. Apparent inhibition of Na+/H+ exchange by amiloride and harmaline in acridine orange studies.Biochim. Biophys. Acta 731:354–360Google Scholar
  42. 42.
    Sasaki, S., Shiigai, T., Yoshiyama, N., Takeuchi, J. 1987. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.Am. J. Physiol. 252:F11-F18Google Scholar
  43. 43.
    Simons, E.R., Schwartz, D.B., Normal, E. 1982. Stimulation response coupling in human platelets: Thrombin-induced changes in pH.In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D.W. Deamer, editors. pp. 463–482. Alan R. Liss, New YorkGoogle Scholar
  44. 44.
    Soleimani, M., Grassl, S.M., Aronson, P.S. 1986. Stoichiometry of Na+−HCO3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex.J. Clin. Invest. 79:1276–1280Google Scholar
  45. 45.
    Thomas, J.A., Buchsbaum, R.N., Zimniak, A., Racker, E. 1979. Intracellular pH-measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ.Biochemistry 18:2210–2218Google Scholar
  46. 46.
    Thomas, R.C. 1976. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurons.J. Physiol. (London) 273:317–338Google Scholar
  47. 47.
    Thomas, R.C. 1984. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery.J. Physiol. (London) 354:3P-22PGoogle Scholar
  48. 48.
    Vigne, P., Frelin, C., Cragoe, E.J., Lazdunski, M. 1984. Structure-activity relationships of amiloride and certain of its analogues in relation to the blockage of the Na+/H+ exchange system.Mol. Pharmacol. 25:131–136Google Scholar
  49. 49.
    Yoshitomi, K., Burckhardt, B.C., Frömter, E. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of the rat renal proximal tubule.Pfluegers Arch. 405:360–366Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Thomas J. Jentsch
    • 1
  • Christoph Korbmacher
    • 1
  • Ilse Janicke
    • 1
  • Dieter G. Fischer
    • 1
  • Frank Stahl
    • 1
  • Horst Helbig
    • 1
  • Herwig Hollwede
    • 1
  • Edward J. CragoeJr.
    • 2
  • Svea K. Keller
    • 1
  • Michael Wiederholt
    • 1
  1. 1.Institute for Clinical Physiology, Steglitz ClinicFree University of BerlinBerlin 45Federal Republic of Germany
  2. 2.Merck Sharp & Dohme Research LaboratoriesWest Point

Personalised recommendations