Skip to main content
Log in

Effect of calcium upon sodium inactivation in the giant axon ofLoligo pealei

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Giant axons ofLoligo pealei were voltage clamped in artificial seawater solutions containing varying concentrations of calcium from 10 to 100mm, and the sodium conductance inactivation was measured with a series of two-pulse experiments. Theh vs. voltage curve showed a shift of about 10 mV in the depolarizing direction on the voltage axis for a tenfold increase in external calcium without substantial alteration in the slope of the voltage dependence. The kinetics of the inactivation process were found to be exponential for hyperpolarizing prepulses, but showed some indication of a sigmoidal decay for depolarizing prepulses in all calcium concentrations employed. Increasing calcium increased the delay in the sigmoidal response. The inactivation time constant τh increased as a function of calcium concentration over the potential range studied, −10 to −90 mV. The values of the rate constants αh and βh are decreased with an increase in calcium and these effects are not consistent with parallel shifts of the rate constant vs. voltage curves along the voltage axis for changes in calcium concentration.

Magnesium does not behave as an equimolar substitute for calcium. The effect of a solution containing 10mm calcium and 50mm magnesium is intermediate to that of solutions containing 10 and 30mm calcium alone.

Predictions of a recent model for the sodium conductance (Moore, J.W., Cox, E.B., 1976Biophys. J. 16:171) which employs calcium binding were compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W.J., Jr., Palti, Y., 1969a. The influence of external potassium on the inactivation of sodium currents in the giant axon of the squid,Loligo pealei.J. Gen. Physiol. 53:685

    Google Scholar 

  • Adelman, W.J., Jr., Palti, Y., 1969b. The effects of external potassium and long duration voltage conditioning on the amplitude of the sodium currents in the giant axon of the squid,Loligo pealei.J. Gen. Physiol. 54:589

    Google Scholar 

  • Begenisich, T. 1975. Magnitude and location of surface charges onMyxicola giant axons.J. Gen. Physiol. 66:47

    Google Scholar 

  • Binstock, L., Adelman, W.J., Jr., Senft, J.P., Lecar, H. 1975. Determination of the resistance in series with the membranes of giant axons.J. Membrane Biol. 21:25

    Google Scholar 

  • Blaustein, M.P., Goldman, D.E., 1968. The action of certain polyvalent cations on the voltage clamped lobster axon.J. Gen. Physiol. 51:279

    PubMed  Google Scholar 

  • Carnahan, B., Luther, H.A., Wilkes, J.O. 1969. Applied numerical methods. p. 367. John Wiley & Sons, New York

    Google Scholar 

  • Chandler, W.K., Hodgkin, A.L., Meves, H. 1965. Effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.J. Physiol. (London) 180:281

    Google Scholar 

  • Chandler, W.K., Meves, H. 1970. Slow changes in membrane permeability and long lasting action potential in axons perfused with fluoride solutions.J. Physiol. (London) 211:70

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218

    Google Scholar 

  • Gilbert, D.L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: determination of surface charge.Biophys. J. 9:447

    Google Scholar 

  • Goldman, L. 1975. Quantitative description of the sodium conductance ofMyxicola in terms of a generalized second-order variable.Biophys. J. 15:119

    PubMed  Google Scholar 

  • Goldman, L., Schauf, C.L. 1972. Inactivation of the sodium current inMyxicola giant axons: Evidence for coupling to the activation process.J. Gen. Physiol. 59:659

    PubMed  Google Scholar 

  • Grahame, D.C. 1947. The electrical double layer and the theory of electrocapillarityChem. Rev. 41:441

    Article  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952a. The dual effect of membrane potential on sodium conductances in the giant axon ofLoligo.J. Physiol. (London) 116:497

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500

    Google Scholar 

  • Hoyt, R. 1963. The squid giant axon. Mathematical models.Biophys. J. 3:399

    Google Scholar 

  • Hoyt, R., Adelman, W.J., Jr. 1970. Sodium inactivation: An experimental test of two models.Biophys. J. 10:610

    PubMed  Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667

    PubMed  Google Scholar 

  • Moore, J.W., Cox, E.B. 1976. A kinetic model for the sodium conductance system in squid axon.Biophys. J. 16:171

    Google Scholar 

  • Moore, L.E., Jakobsson, E. 1971. Interpretations of the sodium permeability changes of myelinated nerve in terms for linear relaxation theory.J. Theor. Biol. 33:77

    PubMed  Google Scholar 

  • Schauf, C.L. 1975. The interactions of calcium withMyxicola giant axons and a description in terms of a simple surface charge model.J. Physiol. (London) 248:613

    Google Scholar 

  • Schauf, C.L., Davis, F.A. 1975. Further studies of activation-inactivation coupling inMyxicola axons. Insensitivity to changes in calcium concentration.Biophys. J. 15:1111

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoukimas, J.J. Effect of calcium upon sodium inactivation in the giant axon ofLoligo pealei . J. Membrain Biol. 38, 271–289 (1978). https://doi.org/10.1007/BF01871926

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871926

Keywords

Navigation