Advertisement

The Journal of Membrane Biology

, Volume 38, Issue 3, pp 209–232 | Cite as

Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases

  • Akihiko Irimajiri
  • Yukio Doida
  • Tetsuya Hanai
  • Akira Inouye
Article

Summary

Dielectric dispersion measurements over a frequency range 0.01–100 MHz were made with the suspensions of a cultured cell line, mouse lymphoma L5178Y, and an attempt to explain the observed dielectric behavior by taking explicitly into consideration the possible involvement of cell nucleus has been presented.

The use of a conventional “single-shell” model in which the cell is represented by a homogeneous sphere coated with a thin limiting shell phase did not duplicate the observed dispersion curves, whereas a “double-shell” model in which one additional concentric shell is incorporated into the “single-shell” model gave a much better fit between the observed and the predicted dispersion curves. Based on the latter model, we analyzed the raw data of dielectric measurements to yield a set of plausible electrical parameters for the lymphoma cell:C M ≅1.0μF/cm2,C N ≅0.4μF/cm2, εk≅300, κca≅0.9, and κkc≅0.7. Here,C M andC N are the specific capacities of plasma and nuclear membranes; ε and κ are the dielectric constant and conductivity with subscripta, c andk referring respectively to the extracellular, the cytoplasmic and the karyoplasmic phases.

Keywords

Lymphoma Specific Capacity Dispersion Curve Nuclear Envelope Cytoplasmic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asami, K., Hanai, T., Koizumi, N. 1976. Dielectric properties of yeast cells.J. Membrane Biol. 28:169Google Scholar
  2. 2.
    Buckhold Shank, B., Smith, N.E. 1974. Characterization of the steady state in mouse lymphoblasts cultured in hypotonic medium.Biochim. Biophys. Acta 367:59PubMedGoogle Scholar
  3. 3.
    Cole, K.S. 1968. Membranes, Ions and Impulses. University of California Press, BerkeleyGoogle Scholar
  4. 4.
    Cole, K.S., Cole, R.H. 1941. Dispersion and absorption in dielectrics. I. Alternating current characteristics.J. Chem. Phys. 9:341Google Scholar
  5. 5.
    Defendi, V., Manson, L.A. 1963. Analysis of the life-cycle in mammalian cells.Nature (London) 198:359Google Scholar
  6. 6.
    Eaton, M.S., Scala, A.R., Jewell, M. 1959. Methods for measuring viability of ascites cells. Dye exclusion and respiration as affected by depletion, poisons and viruses.Cancer Res. 19:945PubMedGoogle Scholar
  7. 7.
    Franke, W.W., Scheer, U. 1974. Structures and functions of the nuclear envelope.In: The Cell Nucleus, H. Busch, editor. Vol. 1, p. 219. Academic Press, New YorkGoogle Scholar
  8. 8.
    Hanai, T., Koizumi, N., Irimajiri, A. 1975. A method for determining the dielectric constant and conductivity of membrane-bounded particles.Biophys. Struct. Mechan. 1:285Google Scholar
  9. 9.
    Hanss, M., Bernengo, J.C. 1973. Dielectric relaxation and orientation of DNA molecules.Biopolymers 12:2151PubMedGoogle Scholar
  10. 10.
    Irimajiri, A., Hanai, T., Inouye, A. 1975. Evaluation of a conductometric method to determine the volume fraction of the suspensions of biomembrane-bounded particles.Experientia 31:1373PubMedGoogle Scholar
  11. 11.
    Irimajiri, A., Hanai, T., Inouye, A. 1975. Dielectric properties of synaptosomes isolated from rat brain cortex.Biophys. Struct. Mechan. 1:273Google Scholar
  12. 12.
    Kanno, Y., Loewenstein, W.R. 1963. A study of the nucleus and cell membranes of oocytes with an intracellular electrode.Exp. Cell Res. 31:149PubMedGoogle Scholar
  13. 13.
    Loewenstein, W.R., Kanno, Y. 1963. Some electrical properties of a nuclear membrane examined with a microelectrode.J. Gen. Physiol. 46:1123PubMedGoogle Scholar
  14. 14.
    Loewenstein, W.R., Kanno, Y. 1963. The electrical conductance and potential across the membrane of some nuclei.J. Cell Biol. 16:421PubMedGoogle Scholar
  15. 15.
    Loewenstein, W.R., Kanno, Y., Ito, S. 1966. Permeability of nuclear membranes.Ann. N.Y. Acad. Sci. 137:708PubMedGoogle Scholar
  16. 16.
    Luft, J.H. 1961. Improvements in epoxy resin embedding method.J. Biophys. Biochem. Cytol. 9:409PubMedGoogle Scholar
  17. 17.
    Malenkov, A.G., Voeikov, V.L., Ovchinikov, Yu.A. 1972. Electroconductivity changes during the mitotic cycle in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 255:304PubMedGoogle Scholar
  18. 18.
    Moore, R.D., Morrill, G.A. 1976. A possible mechanism for concentrating sodium and potassium in the cell nucleus.Biophys. J. 16:527PubMedGoogle Scholar
  19. 19.
    Pauly, H. 1963. Über die elektrische Kapazität der Zellmembran und die Leitfähigkeit des Zytoplasmas von Ehrlich-Aszitestumorzellen.Biophysik 1:143Google Scholar
  20. 20.
    Pauly, H., Packer, L., Schwan, H.P. 1960. Electrical properties of mitochondrial membranes.J. Biophys. Biochem. Cytol. 7:589PubMedGoogle Scholar
  21. 21.
    Pauly, H., Schwan, H.P. 1959. Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale.Z. Naturforsch. 14b:125Google Scholar
  22. 22.
    Pauly, H., Schwan, H.P. 1966. Dielectric properties and ion mobility in erythrocytes.Biophys. J. 6:621PubMedGoogle Scholar
  23. 23.
    Sakamoto, M., Kanda, H., Hayakawa, R., Wada, Y. 1976. Dielectric relaxation of DNA in aqueous solutions.Biopolymers 15:879PubMedGoogle Scholar
  24. 24.
    Schwan, H.P. 1957. Electrical properties of tissue and cell suspensions.In: Advances in Biological and Medical physics. J.H. Lawrence and C.A. Tobias, editors. Vol. 5, p. 147. Academic Press, New YorkGoogle Scholar
  25. 25.
    Schwan, H.P. 1963. Determination of biological impedances.In: Physical Techniques in Biological Research. W.L. Nastuk, editor. Vol. 6, Part B, p. 323. Academic Press, New YorkGoogle Scholar
  26. 26.
    Schwan, H.P., Cole, K.S. 1960. Bioelectricity: Alternating current admittance of cells and tissues.In: Medical Physics. O. Glasser, editor. Vol. 3, p. 52. Yearbook Publishers, ChicagoGoogle Scholar
  27. 27.
    Schwan, H.P., Takashima, S., Miyamoto, V.K., Stoeckenius, W. 1970. Electrical properties of phospholipid vesicles.Biophys. J. 10:1102PubMedGoogle Scholar
  28. 28.
    Takashima, S. 1966. Dielectric dispersion of deoxyribonucleic acid. II.J. Phys. Chem. 70:1372PubMedGoogle Scholar
  29. 29.
    Wiener, J., Spiro, D., Loewenstein, W.R. 1965. Ultrastructure and permeability of nuclear membranes.J. Cell Biol. 27:107PubMedGoogle Scholar
  30. 30.
    Wotring Roti Roti, L., Rothstein, A. 1973. Adaptation of mouse leukemic cells (L 5178 Y) to anisotonic media. I. Cell volume regulation.Exp. Cell Res. 79:295PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Akihiko Irimajiri
    • 1
  • Yukio Doida
    • 1
  • Tetsuya Hanai
    • 1
  • Akira Inouye
    • 1
  1. 1.Department of PhysiologyKyoto University School of MedicineKyoto 606Japan

Personalised recommendations