Skip to main content
Log in

Cross-linking of cardiac gap junction connexons by thiol/disulfide exchanges

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

SDS-polyacrylamide gel electrophoresis and immunoblotting were used to investigate inter- and intramolecular disulfide bonds to connexin 43 (the cardiac gap junctional protein) in isolated rat heart gap junctions and in whole heart fractions. In gap junctions isolated in the absence of alkylating agent, connexin 43 molecules are cross-linked by disulfide bonds. The use of iodoacetamide (100mm) for the first steps of isolation procedure prevents the formation of these artifactual linkages. Investigation of connexin 43 in whole heart fractions by means of antibodies confirms the results obtained with isolated gap junctions; that is, connexin 43 molecules are not interconnected with disulfide bridges. In whole heart fractions treated with alkylating agents, a 38 kD protein, immunologically related to connexin 43, and containing intramolecular disulfide bonds is detected. It is hypothesized that this protein might be a folded form of connexin 43, a precursory form of the molecules embedded in the gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

EDTA:

ethylene diamine tetra-acetic acid

IAA:

iodoacetamide

NEM:

N-ethylmaleimide

PAGE:

polyacrylamide gel electrophoresis

PMSF:

phenylmethylsfonyl fluoride

SDS:

sodium dodecyl sulfate

Tris:

trishydroxymethyl-aminomethane

References

  • Baker, T.S., Caspar, D.L.D., Hollingshead, C.J., Goodenough, D.A. 1983. Gap junction structure: IV. Asymmetric features revealed by low-irradiation microscopy.J. Cell Biol. 96:204–216

    Article  PubMed  Google Scholar 

  • Beyer, E.C., Paul, D.L., Goodenough, D.A. 1987. Connexin 43: A protein from rat heart homologous to a gap junction protein from liver.J. Cell Biol. 105:2621–2629

    PubMed  Google Scholar 

  • Dupont, E., Aoumari, A. El, Roustiau-Sévère, S., Briand, J.P., Gros, D. 1988. Immunological characterization of rat cardiac gap junctions: Presence of common antigenic determinants in heart of other vertebrate species and in various organs.J. Membrane Biol. 104:119–128

    Google Scholar 

  • Freedman, R.B. 1984. Native disulphide band formation in protein biosynthesis: Evidence for the role of protein disulphide isomerase.Trends Biochem. Sci. 9:438–441

    Google Scholar 

  • Gros, D., Nicholson, B.J., Revel, J.P. 1983. Comparative analysis of the gap junction protein from rat and liver: Is there a tissue-specificity of gap junction?Cell 35:539–549

    PubMed  Google Scholar 

  • Guarnieri, C., Flamigni, F., Rossoni-Caldarera, C. 1979. Glutathione peroxidase activity and release of glutathione from oxygen deficient perfused rat heart.Biochem. Biophys. Res. Commun. 89:678–684

    PubMed  Google Scholar 

  • Henderson, D., Eibl, H., Weber, K. 1979. Structure and biochemistry of mouse hepatic gap junctions.J. Mol. Biol. 132:193–218

    PubMed  Google Scholar 

  • Hirokawa, N., Heuser, J. 1982. The inside and outside of gap junction membranes visualized by deep-etching.Cell 30:395–406

    PubMed  Google Scholar 

  • Johnson, D.A., Gantsch, J.W., Sportsman, J.R., Elder, J.M. 1984. Improved technique utilizing non-fat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose.Gene Anal. Techn. 1:3–8

    Google Scholar 

  • Kistler, J., Christie, D., Bullivant, S. 1988. Homologies between gap junction proteins in lens, heart and liver.Nature (London) 331:721–723

    Google Scholar 

  • Kosower, N.S., Kosower, E.M. 1978. The glutathione status of the cell.Int. Rev. Cytol. 54:109–160

    PubMed  Google Scholar 

  • Kumar, N.H., Gilula, N.B. 1986. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein.J. Cell Biol. 103:767–776

    PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T 4.Nature (London) 227:680–685

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Manjunath, C.K., Goings, G.E., Page, E. 1984a. Cytoplasmic surface and intramembrane components of rat heart gap junctional proteins.Am. J. Physiol. 246:H865-H875

    Google Scholar 

  • Manjunath, C.K., Goings, G.E., Page, E. 1984b. Detergent sensitivity and splitting of isolated liver gap junctions.J. Membrane Biol. 78:147–155

    Google Scholar 

  • Manjunath, C.K., Nicholson, B.J., Teplov, D.B., Hood, L.E., Page, E., Revel, J.P. 1987. The cardiac gap junction protein (M r 47,000) has a tissue-specific cytoplasmic domain ofM r 17,000 at its carboxy-terminus.Biochem. Biophys. Res. Commun. 142:228–234

    PubMed  Google Scholar 

  • Manjunath, C.K., Page, E. 1986. Rat heart gap junctions as disulfide-bonded connexon multimers: Their depolymerization and solubilization in deoxycholate.J. Membrane Biol. 90:43–57

    Google Scholar 

  • Merrified, R. 1963. Solid-phase peptide synthesis. 1. The synthesis of a tetrapeptide.J. Am. Chem. Soc. 85:2149–2154

    Google Scholar 

  • Nicholson, B.J., Dermietzel, R., Teplov, D.B., Traub, O., Willecke, K., Revel, J.P. 1987. Two homologous protein components of hepatic gap junctions.Nature (London) 329:732–734

    Google Scholar 

  • Nicholson, B.J., Gros, D., Kent, S.B., Hood, L.E., Revel, J.P. 1985. theM r, 28,000 gap junction protein from rat heart and liver are different but related.J. Biol. Chem. 260:6514–6517

    Google Scholar 

  • Paul, D. 1985. Antibody against liver gap junction 27 kD protein is tissue-specific and cross-reacts with a 54 kD protein.In: Gap Junction. M.V.L. Bennett and D.C. Spray, editors. pp. 107–122. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Paul, D. 1986. Molecular cloning of cDNA for rat liver gap junction protein.J. Cell Biol. 103:123–134

    PubMed  Google Scholar 

  • Paul, D., Goodenough, D.A. 1987. A novel gap junction protein present in rat lens fibers.J. Cell Biol. 105:227a

    Google Scholar 

  • Pitts, J.D., Finbow, M.E. 1986. The gap junction.J. Cell Sci. Suppl. 4:239–266

    PubMed  Google Scholar 

  • Revel, J.P., Yancey, B.S., Nicholson, B.J. 1986. The gap junction proteins.Trends Biochem. Sci. 11:375–377

    Google Scholar 

  • Shibata, Y., Manjunath, C.K., Page, E. 1985. Differences between cytoplasmic surfaces of deep-etched heart and liver gap junctions.Am. J. Physiol. 249:H690-H693

    PubMed  Google Scholar 

  • Towbin, M., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354

    PubMed  Google Scholar 

  • Warner, A. 1988. The gap junction.J. Cell Sci. 89:1–7

    PubMed  Google Scholar 

  • Zimmer, D.B., Green, C.R., Evans, H.W., Gilula, N.B. 1987. Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures.J. Biol. Chem. 262:7751–7763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, E., El Aoumari, A., Briand, J.P. et al. Cross-linking of cardiac gap junction connexons by thiol/disulfide exchanges. J. Membrain Biol. 108, 247–252 (1989). https://doi.org/10.1007/BF01871739

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871739

Key Words

Navigation