Skip to main content
Log in

Volume-dependent regulation of ion transport and membrane phosphorylation in human and rat erythrocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Osmotic swelling of human and rat erythrocytes does not induce regulatory volume decrease. Regulatory volume increase was observed in shrunken erythrocytes of rats only. This reaction was blocked by the inhibitors of Na+/H+ exchange. Cytoplasmic acidification in erythrocytes of both species increases the amiloride-inhibited component of22Na influx by five- to eight-fold. Both the osmotic and isosmotic shrinkage of rat erythrocytes results in the 10- to 30-fold increase of amiloride-inhibited22Na influx and a two-fold increase of furosemide-inhibited86Rb influx. We failed to indicate any significant changes of these ion transport systems in shrunken human erythrocytes. The shrinking of quin 2-loaded human and rat erythrocytes results in the two- to threefold increase of the rate of45Ca influx, which is completely blocked by amiloride. The dependence of volume-induced22Na influx in rat erythrocytes and45Ca influx in human erythrocytes on amiloride concentration does not differ. The rate of45Ca influx in resealed ghosts was reduced by one order of magnitude when intravesicular potassium and sodium were replaced by choline. It is assumed that the erythrocyte shrinkage increases the rate of a nonselective Ca 2+o (Na + i , K + i ) exchange. Erythrocyte shrinking does not induce significant phosphorylation of membrane protein but increases the32P incorporation in diphosphoinositides. The effect of shrinkage on the32P labeling of phosphoinositides is diminished after addition of amiloride. It is assumed that volume-induced phosphoinositide response plays an essential role in the mechanism of the activation of transmembrane ion movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adragna, N.C., Tosteson, D.C. 1984. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells.J. Membrane Biol. 78:43–52

    Article  Google Scholar 

  • Aronson, P.S. 1985. Kinetics properties of the plasma membrane Na+−H+ exchanger.Annu. Rev. Physiol. 47:545–560

    Google Scholar 

  • Avruch, J., Fairbanks, G. 1974. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinase. I. A monovalent cation-stimulated reaction.Biochemistry 13:5507–5514

    PubMed  Google Scholar 

  • Bakker-Grunwald, T. 1983. Potassium permeability and volume control in isolated rat hepatocytes.Biochim. Biophys. Acta 731:239–242

    PubMed  Google Scholar 

  • Berridge, M.J. 1984. Inositol triphosphate and diacylglycerol as a second messenger.Biochem. J. 220:345–360

    PubMed  Google Scholar 

  • Besterman, J.M., May, W.C., LeVine, H., III, Cragoe, E.J., Cuatrecasas, P. 1985. Amiloride inhibits phorbol ester stimulated Na+/H+ exchange and protein kinase C. An amiloride analogue selectively inhibits Na/H exchange.J. Biol. Chem. 260:1155–1159

    PubMed  Google Scholar 

  • Cala, P.M. 1983. Cell volume regulation byAmphiuma red blood cells. The role of Ca2+ as a modulator of alkali metal/H+ exchange.J. Gen. Physiol. 82:761–784

    Article  PubMed  Google Scholar 

  • Davis, R.J., Czech, M.P. 1985. Amiloride directly inhibits growth factor receptor tyrosine kinase activity.J. Biol. Chem. 260:2543–2551

    PubMed  Google Scholar 

  • Duhm, J., Göbel, B.O. 1982. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes: I. Evaluation of simple uptake test to asses the activity of the two transport systems.Hypertension 4:468–476

    PubMed  Google Scholar 

  • Duhm, J., Göbel, B.O. 1984a. Role of furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo.J. Membrane Biol. 77:243–254

    Google Scholar 

  • Duhm, J., Göbel, B.O. 1984b. Na+−K+ transport and volume of rat erythrocytes under dietery K-deficiency.Am. J. Physiol. 246:C20-C26

    Google Scholar 

  • Escobales, N., Canessa, M. 1986. Amiloride-sensitive Na+ transport in human red cells: Evidence for Na/H exchange system.J. Membrane Biol. 90:21–28

    Google Scholar 

  • Faquin, W.C., Chahwala, S.B., Cantley, L.C., Branton, D. 1986. Protein kinase C of human erythrocytes phosphorylates band 4.1 and 4.9.Biochim. Biophys. Acta 887:142–149

    PubMed  Google Scholar 

  • Grinstein, S., Rothstein, A. 1986. Mechanisms of regulation of the Na+/H+ exchanger.J. Membrane Biol. 90:1–12

    Google Scholar 

  • Grinstein, S., Rothstein, A., Sarkadi, B., Gelfand, E.W. 1984. Responses of lymphocytes to anisotonic medium: Volume regulation behavior.Am. J. Physiol. 246:C204-C215

    Google Scholar 

  • Haggerty, J.C., Cragoe, E.J., Slayman, C.W., Adelberg, E.A. 1985. Na+/H'+ exchange activity in the pig kidney epithelia cell line LLC-PKt: Inhibition by amiloride and its derivatives.Biochem. Biophys. Res. Commun. 127:759–767

    PubMed  Google Scholar 

  • Hoffman, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Google Scholar 

  • Horne, W.C., Leto, T.L., Marchesi, V.T. 1985. Differential phosphorylation of multiple sites in protein 4.1 and protein 4.9 by phorbol ester-activated and cyclic AMP-dependent protein kinases.J. Biol. Chem. 260:9073–9076

    PubMed  Google Scholar 

  • Hosey, M.M., Tao, M. 1976. An analysis of the autophosphorylation of rabbit and human erythrocyte membranes.Biochemistry 151:1561–1568

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Dawson, P.M.C. 1984. Phosphatidylinositol-4,5-biphosphate phosphodiesterase and phosphomonoesterase activities of rat brain.Biochem. J. 218:177–185

    Google Scholar 

  • Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A., Gispen, W.H. 1981. Corticotropin-(1–24)tetracosapeptide affects protein phosphorylation and phosphoinositides metabolism in rat brain.Biochem. J. 194:283–291

    Google Scholar 

  • Kiselev, G., Minenko, A., Moritz, V., Ochme, P. 1981. Polyphosphoinositide metabolism in erythrocytes of spontaneously hypertensive rats.Biochem. Pharmacol. 30:833–837

    Google Scholar 

  • Lauf, P.K. 1982. Evidence for chloride-dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost,Ospames tau.J. Comp. Physiol. 146:9–16

    Google Scholar 

  • Lauf, P.K. 1984. Thiol-dependent passive K+/Cl transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes.J. Membrane Biol. 82:167–178

    Google Scholar 

  • Lauf, P.K., Perkis, C.M., Adragna, N.C. 1985. Cell volume and metabolic dependence of NEM-stimulated K+−Cl flux in human red blood cells.Am. J. Physiol. 249:C124-C128

    PubMed  Google Scholar 

  • Lew, V.L., Tsien, R.Y., Miner, C., Bookchin, R.M. 1982. Physiological Ca 2+ i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator.Nature (London) 289:478–481

    Google Scholar 

  • Lowe, A., Lin, H.Y., Yee, V.J., Warnock, D.G. 1985. Regulation of the activity of the Na+/H+ antiporter in brush-border membrane vesicles from proximal tubule.Ann. N.Y. Acad. Sci. 456:229–232

    PubMed  Google Scholar 

  • Macey, R.I. 1977. Transport of water and nonelectrolytes across red cell membranes.In: Membrane Transport in biology. Vol. 2, pp. 1–58. D.S. Tosteson, editor. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Melloni, E., Pontremoli, S., Sacco, O., Sparatore, B., Salamino, F., Horecker, B.L. 1985. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+-requiring proteinase.Proc. Natl. Acad. Sci. USA 82:6435–6439

    PubMed  Google Scholar 

  • O'Neill, W.C., Mikkelsen, R.B. 1987. Furosemide-sensitive Na+ and K+ transport and human erythrocyte volume.Biochim. Biophys. Acta 896:196–202

    PubMed  Google Scholar 

  • Orlov, S.N., Pokudin, N.I., Kotelevtsev, Yu.V. 1987. Transport of K+, anions and the activity of Na-pump in erythrocyte membranes: Three different mechanisms of regulation by intracellular calcium.Biochemistry (Moscow) 52:1373–1386

    Google Scholar 

  • Orlov, S.N., Pokudin, N.I., Postnov, Yu.V. 1988. Transport of sodium and proton and hypotonic haemolysis in the valinomycin-treated erythrocytes of rats with spontaneous hypertension.J. Hypertens. 6:351–359

    PubMed  Google Scholar 

  • Palfrey, H.C., Waseem, A. 1985. Protein kinase C in human erythrocytes. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins.J. Biol. Chem. 260:16021–16029

    PubMed  Google Scholar 

  • Parker, J.C. 1983. Volume-responsive sodium movements in dog red blood cells.Am. J. Physiol. 244:C324-C330

    Google Scholar 

  • Petiton, M., Tuy, F., Rosenfeld, C. 1978. A simplified procedure for organic phosphorus determination from phospholipids.Anal. Biochem. 91:350–353

    PubMed  Google Scholar 

  • Pokudin, N.I., Orlov, S.N. 1986. Ca2+ transport in human erythrocytes: The study on cells loaded with a highly selective calcium chelators.Biol. Membr. (Moscow) 3:108–117

    Google Scholar 

  • Postnov, Yu.V., Orlov, S.N. 1986. Evidence for altered phosphorylation of the erythrocyte membrane skeleton in spontaneously hypertensive rats.J. Hypertens. 4(Suppl. 6):S367-S369

    Google Scholar 

  • Ralph, R.K., Smart, J., Wojcik, C.J., McQuillan, J. 1982. Inhibition of mouse mastocytoma protein kinase by amiloride.Biochem. Biophys. Res. Commun. 104:1054–1059

    PubMed  Google Scholar 

  • Rubin, C.S. 1975. Adenosine 3′:5′-monophosphate-regulated phosphorylation of erythrocyte membrane proteins. Separation of membrane-associated cyclic adenosine 3′:5′-monophosphate-dependent protein kinase from its endogenous substrates.J. Biol. Chem. 250:9044–9052

    PubMed  Google Scholar 

  • Schmidt, W.F., McManus, T.J. 1977. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.J. Gen. Physiol. 79:59–79

    Google Scholar 

  • Steck, T.L. 1974. The organization of proteins in the human red blood cell membranes.J. Cell Biol. 62:1–19

    PubMed  Google Scholar 

  • Szasz, I., Sarkadi, B., Gardos, G. 1977. Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells.J. Membrane Biol. 35:75–93

    Google Scholar 

  • Towbin, H.H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354

    PubMed  Google Scholar 

  • Vareska, L., Carafoli, E. 1982. Vanadate-induced movements of Ca2+ and K+ in human red blood cells.J. Biol. Chem. 257:7414–7421

    PubMed  Google Scholar 

  • Wolf, M., Le Vine, H., III, May, S., Cuatrecasas, P., Sahyoun, N. 1985. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters.Nature (London) 317:545–549

    Google Scholar 

  • Yingst, D.R., Hoffman, J.F. 1984. Passive Ca transport in human red blood cell ghosts measured with entrapped Arsenazo III.J. Gen. Physiol. 83:1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, S.N., Pokudin, N.I., Kotelevtsev, Y.V. et al. Volume-dependent regulation of ion transport and membrane phosphorylation in human and rat erythrocytes. J. Membrain Biol. 107, 105–117 (1989). https://doi.org/10.1007/BF01871716

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871716

Key Words

Navigation