The Journal of Membrane Biology

, Volume 43, Issue 4, pp 335–349 | Cite as

Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeastRhodotorula gracilis (Rhodosporidium toruloides)

  • Robert Hauer
  • Milan Höfer


A membrane potential (inside negative) across the plasma membrane of the obligatory aerobic yeastRhodotorula gracilis is indicated by the intracellular accumulation of the lipid-soluble cations tetraphenylphosphonium and triphenylmethylphosphonium. The uptake of these ions is inhibited by anaerobic conditions, by uncouplers, by addition of diffusible ions, or by increase of the leakiness of the membrane caused by the polyene antibiotic nystatin. The membrane potential is strongly pH-dependent, its value increasing with decreasing extracellular proton concentration. Addition of transportable monosaccharides causes a depolarization of the electrical potential difference, indicating that the H+-sugar cotransport is electrogenic. The effect on the membrane potential is enhanced by increasing the sugar concentration. The half-saturation constants of depolarization ford-xylose andd-galactose were comparable to those of the corresponding transport system for the two sugars. All agents that depressed the membrane potential inhibited monosaccharide transport; hence the membrane potential provides energy for active sugar transport in this strain of yeast.


Sugar Membrane Potential Monosaccharide Nystatin Sugar Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azzone, G.F., Bragadin, M., Pozzan, T., Dell'Antone, P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta 439:90Google Scholar
  2. Brewer, J.M., Pesce, A.J., Ashworth, R.B. 1974. Experimental Techniques in Biochemistry. p. 299. Prentice-Hall, Englewood CliffsGoogle Scholar
  3. Deshusses, J., Reber, G. 1977. Transport of cyclitols by a proton symport inKlebsiella aerogenes.Eur. J. Biochem. 72:87Google Scholar
  4. Finkelstein, A., Holz, R. 1973. Aqueous pores created in thin lipid membrane by the polyene antibiotics nystatin and filipin.In: Membranes. Vol. 2. Lipid Bilayers and Antibiotics G. Eisenman, editor. p. 377. Dekker, New YorkGoogle Scholar
  5. Giacquinta, R. 1977. Phloem loading of sucrose.Plant Physiol. 59:750Google Scholar
  6. Hedenström, M. von 1976. Untersuchungen an Protoplasten der obligat aeroben HefeRhodotorula gracilis. Ph.D. Thesis. University of Bonn, GermanyGoogle Scholar
  7. Heinz, E., Geck, P., Pietrzyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N. Y. Acad. Sci. 264:428Google Scholar
  8. Heller, K., Höfer, M. 1975. Temperature dependence of the energy-linked monosaccharide transport across the cell membrane ofRhodotorula gracilis.J. Membrane Biol. 21:261Google Scholar
  9. Hoeberichts, J.A., Borst-Pauwels, G.W.F.H. 1975. Effect of tetraphenylboron upon the uptake of the lipophilic cation dibenzyldimethylammonium by yeast cells.Biochim. Biophys. Acta 413:248Google Scholar
  10. Höfer, M. 1971. Transport of monosaccharides inRhodotorula gracilis in the absence of metabolic energy.Arch. Mikrobiol. 80:50Google Scholar
  11. Höfer, M., Kotyk, A. 1968. Tight coupling of monosaccharide transport and metabolism inRhodotorula gracilis.Folia Microbiol. Prague 13:197Google Scholar
  12. Höfer, M., Misra, P.C. 1978. Evidence for a H+-sugar symport in the yeastRhodotorula gracilis (glutinis).Biochem. J. 172:15Google Scholar
  13. Horak, J., Kotyk, A. 1969. Anomalous uptake ofd-ribose byRhodotorula gracilis.Folia Microbiol. Prague 14:291Google Scholar
  14. Janda, S., Hedenström, M. von 1974. Uptake of disaccharides by the aerobic yeastRhodotorula glutinis.Arch. Microbiol. 101:273Google Scholar
  15. Komor, E., Rotter, M., Tanner, W. 1977. A proton-cotransport system in a higher plant: Sucrose transport inRicinus communis.Plant Sci. Lett. 9:153Google Scholar
  16. Komor, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris.Eur. J. Biochem. 70:197Google Scholar
  17. Kotyk, A., Höfer, M. 1965. Uphill transport of sugars in the yeastRhodotorula gracilis. Biochim. Biophys. Acta102:410Google Scholar
  18. Lagarde, A., Haddock, B.A. 1977. Proton uptake linked to the 3-deoxy-2-oxo-d-gluconate-transport system ofEscherichia coli.Biochem. J. 162:183Google Scholar
  19. Laris, P.C., Pershadsingh, H.A., Johnstone, R.M. 1976. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.Biochim. Biophys. Acta 436:475Google Scholar
  20. Liberman, E.A., Topali, V.P. 1969. Permeability of biomolecular phospholipid membranes for lipid-soluble ions.Biofizika 14:452Google Scholar
  21. Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants.J. Am. Chem. Soc. 56:658Google Scholar
  22. Lombardi, R.J., Reeves, J.P., Kaback, H.R. 1973. Mechanisms of active transport in isolated bacterial vesicles.J. Biol. Chem. 248:3551Google Scholar
  23. Miller, A.G., Budd, K. 1976 Evidence for a negative membrane potential for movement of Cl against its electrochemical gradient in the AscomyceteNeocosmospora vasinfecta.J. Bacteriol. 132:741Google Scholar
  24. Misra, P.C., Höfer, M. 1975. An energy-linked proton extrusion across the cell membrane ofRhodotorula gracilis.FEBS Lett. 52:95Google Scholar
  25. Racusen, R.H., Galston, A.W. 1977. Electrical evidence for rhythmic changes in the cotransport of sucrose and hydrogen ions inSamanea pulvini.Planta 135:57Google Scholar
  26. Seaston, A., Inkson, C., Eddy, A.A. 1973. The absorption of protons with specific amino acids and carbohydrates by yeast.Biochem. J. 134:1031Google Scholar
  27. Slayman, C.L., Slayman, C.W. 1974. Depolarization of the plasma membrane ofNeurospora during active transport of glucose: Evidence for a proton-dependent cotransport system.Proc. Nat. Acad. Sci. USA 71:1935Google Scholar
  28. West, I.C., Mitchell, P. 1972. Proton-coupled β-galactoside translocation in non-metabolizingEscherichia coli.J. Bioenerg. 3:445Google Scholar
  29. West, I.C., Mitchell, P. 1973. Stoichiometry of lactose-H+ symport across the plasma membrane ofEscherichia coli.Biochem. J. 132:587Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Robert Hauer
    • 1
  • Milan Höfer
    • 1
  1. 1.Botanisches Institut, der UniversitätBonn 1Germany

Personalised recommendations