The Journal of Membrane Biology

, Volume 84, Issue 1, pp 45–60 | Cite as

Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells

  • E. Bayerdörffer
  • L. Eckhardt
  • W. Haase
  • I. Schulz


ATP-dependent45Ca2+ uptake was investigated in purified plasma membranes from rat pancreatic acinar cells. Plasma membranes were purified by four subsequent precipitations with MgCl2 and characterized by marker enzyme distribution. When compared to the total homogenate, typical marker enzymes for the plasma membrane, (Na+,K+)-ATPase, basal adenylate cyclase and CCK-OP-stimulated adenylate cyclase were enriched by 43-fold, 44-fold, and 45-fold, respectively. The marker for the rough endoplasmic reticulum was decreased by fourfold compared to the total homogenate. Comparing plasma membranes with rough endoplasmic reticulum, Ca2+ uptake was maximal with 10 and 2 μmol/liter free Ca2+, and half-maximal with 0.9 and 0.5 μmol/liter free Ca2+. It was maximal at 3 and 0.2 mmol/liter free Mg2+ concentration, at an ATP concentration of 5 and 1 mmol/liter, respectively, and at pH 7 for both preparations. When Mg2+ was replaced by Mn2+ or Zn2+ ATP-dependent Ca2+ uptake was 63 and 11%, respectively, in plasma membranes; in rough endoplasmic reticulum only Mn2+ could replace Mg2+ for Ca2+ uptake by 20%. Other divalent cations such as Ba2+ and Sr2+ could not replace Mg2+ in Ca2+ uptake. Ca2+ uptake into plasma membranes was not enhanced by oxalate in contrast to Ca2+ uptake in rough endoplasmic reticulum which was stimulated by 7.3-fold. Both plasma membranes and rough endoplasmic reticulum showed cation and anion dependencies of Ca2+ uptake. The sequence was K+>Rb+>Na+>Li+>choline+ in plasma membranes and Rb+≥K+≥Na+>Li+>choline+ for rough endoplasmic reticulum. The anion sequence was Cl≥Br≥I>SCN>NO 3 >isethionate >cyclamate>gluconate>SO 4 2− ≥glutarate and Cl>Br>gluconate>SO 4 2− >NO 3 >I>cyclamate≥SCN, respectively. Ca2+ uptake into plasma membranes appeared to be electrogenic since it was stimulated by an inside-negative K+ and SCN diffusion potential and inhibited by an inside-positive diffusion potential. Ca2+ uptake into rough endoplasmic reticulum was not affected by diffusion potentials. We assume that the Ca2+ transport mechanism in plasma membranes as characterized in this study represents the extrusion system for Ca2+ from the cell that might be involved in the regulation of the cytosolic Ca2+ level.

Key Words

electrogenic Ca2+ transport plasma membrane rough endoplasmic reticulum pancreatic acinar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agostini, B., Hasselbach, W. 1971. Electron cytochemistry of calcium uptake in the fragmented sarcoplasmic reticulum.Histochemistry 28:55–67Google Scholar
  2. 2.
    Amsterdam, A., Jamieson, J.D. 1972. Structural and functional characterization of isolated pancreatic exocrine cells.Proc. Natl. Acad. Sci. USA 69:3028–3032Google Scholar
  3. 3.
    Bayerdörffer, E., Streb, H., Eckhardt, L., Haase, W., Schulz, I. 1984. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas.J. Membrane Biol. 81:69–82Google Scholar
  4. 4.
    Booth, A.G., Kenny, A.J. 1974. A rapid method for the preparation of microvilli from rabbit kidney.Biochem. J. 142:575–581Google Scholar
  5. 5.
    Bruns, D.E., McDonald, J.M., Jarett, L. 1976. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes.J. Biol. Chem. 251:7191–7197Google Scholar
  6. 6.
    Carafoli, E., Zurini, M. 1982. The Ca2+-pumping ATPase of plasma membranes.Biochim. Biophys. Acta 683:279–301Google Scholar
  7. 7.
    Carafoli, E., Zurini, M., Niggli, V., Krebs, J. 1982. The calcium-transporting ATPase of erythrocytes.Ann. N.Y. Acad. Sci. 402:304–326Google Scholar
  8. 8.
    Case, R.M., Clausen, T. 1973. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas.J. Physiol. (London) 235:75–102Google Scholar
  9. 9.
    Chiesi, M., Inesi, G. 1980. Adenosine 5-triphosphate-dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles.Biochemistry 19:2912–2918Google Scholar
  10. 10.
    Chu, A., Tate, C.A., Bick, R.J., Van Winkle, W.B., Entman, M.L. 1983. Anion effects on in vitro sarcoplasmic reticulum function.J. Biol. Chem. 258:1656–1664Google Scholar
  11. 11.
    Colca, J.R., McDonald, J.M., Kotagal, N., Patke, Ch., Fink, C.J., Greider, M.H., Lacy, P.E., McDaniel, M.L. 1982. Active calcium uptake by islet-cell endoplasmic reticulum.J. Biol. Chem. 257:7223–7228Google Scholar
  12. 12.
    Dormer, R.L., Williams, J.A. 1981. Secretagogue-induced changes in subcellular Ca2+ distribution in isolated pancreatic acini.Am. J. Physiol. 240:G130-G140Google Scholar
  13. 13.
    Eimerl, S., Savion, N., Heichal, O., Selinger, Z. 1974. Induction of enzyme secretion in rat pancreatic slices using the ionophore A-23187 and calcium.J. Biol. Chem. 249:3991–3993Google Scholar
  14. 14.
    Gardner, J.D., Conlon, T.P., Klaeveman, H.L., Adams, T.D., Ondetti, M.A. 1975. Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells.J. Clin. Invest. 56:366–375Google Scholar
  15. 15.
    Hasselbach, W. 1974. Sarcoplasmic ATPase. In: The Enzymes. P.D. Boyer, editor. Vol. 10, pp. 431–467. Academic, New YorkGoogle Scholar
  16. 16.
    Hatcher, D.W., Goldstein, G. 1969. Improved methods for determination of RNA and DNA.Anal. Biochem. 31:42–50Google Scholar
  17. 17.
    Hauser, H., Howell, K., Dawson, R.M.C., Bowyer, D.E. 1980. Rabbit small intestine brush border membrane preparation and lipid composition.Biochim. Biophys. Acta 602:567–577Google Scholar
  18. 18.
    Heisler, S., Fast, D., Tenenhouse, A. 1972. Role of calcium and cyclic AMP in protein secretion from rat exocrine pancreas.Biochim. Biophys. Acta 279:561–572Google Scholar
  19. 19.
    Hellmessen, W., Christian, A.L., Fasold, H., Schulz, I. 1985. Coupled Na+/H+-ion exchange in isolated acinar cells from the exocrine rat pancreas.Am. J. Physiol. (in press) Google Scholar
  20. 20.
    Henkart, P.H., Reese, T.S., Brinkley, F.J., Jr. 1978. Endoplasmic reticulum sequesters calcium in the squid giant axon.Science 202:88–89Google Scholar
  21. 21.
    Hill, T.L., Inesi, G. 1982. Equilibrium cooperative binding of calcium and protons by sarcoplasmic reticulum ATPase.Proc. Natl. Acad. Sci. USA 79:3978–3982Google Scholar
  22. 22.
    Hokin, L.E. 1966. Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices.Biochim. Biophys. Acta 115:219–221Google Scholar
  23. 23.
    Immelmann, A., Söling, H.-D. 1983. ATP-dependent calcium sequestration and calcium/ATP stoichiometry in isolated microsomes from guinea pig parotid glands.FEBS 162:406–410Google Scholar
  24. 24.
    Iwatsuki, N., Petersen, O.H. 1977. Acetylcholine-like effects of intracellular calcium application in pancreatic acinar cells.Nature (London) 268:147–149Google Scholar
  25. 25.
    Kanazawa, T., Boyer, P.D. 1973. Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles.J. Biol. Chem. 248:3163–3172Google Scholar
  26. 26.
    Kaplan, M.M. 1972. Progress in hepatology: Alkaline phosphatase.Gastroenterology 62:452–468Google Scholar
  27. 27.
    Kondo, S., Schulz, I. 1976. Calcium ion uptake in isolated pancreas cells induced by secretagogues.Biochim. Biophys. Acta 419:76–92Google Scholar
  28. 28.
    Kraus-Friedmann, N., Biber, J., Murer, H., Carafoli, E. 1982. Calcium uptake in isolated hepatic plasma-membrane vesicles.Eur. J. Biochem. 129:7–12Google Scholar
  29. 29.
    Kribben, A., Tyrakowski, T., Schulz, I. 1983. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.Am. J. Physiol. 244:G480-G490Google Scholar
  30. 30.
    Lambert, M., Christophe, J. 1978. Characterization of (Mg,Ca)-ATPase activity in rat pancreatic plasma membranes.Eur. J. Biochem. 91:485–492Google Scholar
  31. 31.
    Matthews, E.K., Petersen, O.H. 1973. Pancreatic acinar cells: Ionic dependence of the membrane potential and acetylcholine-induced depolarization.J. Physiol. (London) 231:283–295Google Scholar
  32. 32.
    Meissner, G. 1981. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.J. Biol. Chem. 256:636–643Google Scholar
  33. 33.
    Meissner, G., McKinley, D. 1982. Permeability of canine cardiac sarcoplasmic reticulum vesicles to K+, Na+, H+ and Cl.J. Biol. Chem. 257:7704–7711Google Scholar
  34. 34.
    Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen insbesondere in Derivaten der Adenylsäure.Z. Physiol. Chem. 258:117–120Google Scholar
  35. 35.
    Meldolesi, J., Jamieson, J.D., Palade, G.E. 1971. Composition of cellular membranes in the pancreas of the guinea pig. I. Isolation of membrane fractions.J. Cell Biol. 49:109–129Google Scholar
  36. 36.
    Milutinovic, S., Sachs, G., Haase, W., Schulz, I. 1977. Studies on isolated subcellular components of cat pancreas. I. Isolation and enzymatic characterization.J. Membrane Biol. 36:253–279Google Scholar
  37. 37.
    Milutinoviç, S., Schulz, I., Rosselin, G. 1976. The interaction of secretin with pancreatic membranes.Biochim. Biophys. Acta 436:113–127Google Scholar
  38. 38.
    Moore, L., Chen, T.S., Knapp, H.R., Jr., Landon, E.J. 1975. Energy-dependent calcium sequestration activity in rat liver microsomes.J. Biol. Chem. 250:4562–4568Google Scholar
  39. 39.
    Moore, L., Fitzpatrick, D.F., Chen, T.S., Landon, E.J. 1974. Calcium pump activity of the renal plasma membrane and renal microsomes.Biochim. Biophys. Acta 345:405–418Google Scholar
  40. 40.
    Nishiyama, A., Petersen, O.H. 1975. Pancreatic acinar cells: Ionic dependence of acetylcholine-induced membrane potential and resistance change.J. Physiol. (London) 244:431–465Google Scholar
  41. 41.
    Petersen, O.H., Iwatsuki, N. 1978. The role of calcium in pancreatic acinar cell stimulus-secretion coupling: An electrophysiological approach.Ann. N.Y. Acad. Sci. 307:599–617Google Scholar
  42. 42.
    Renckens, B.A.M., Schrijen, J.J., Swarts, H.G.P., De Pont, J.J.H.H.M., Bonting, S.L. 1978. Role of calcium in exocrine pancreatic secretion. IV. Calcium movements in isolated acinar cells of rabbit pancreas.Biochim. Biophys. Acta 544:338–350Google Scholar
  43. 43.
    Rosenzweig, S.A., Miller, L.J., Jamieson, J.D. 1983. Identification and localization of cholecystokinin-binding sites on rat pancreatic plasma membranes and acinar cells: A biochemical and autoradiographic study.J. Cell Biol. 96:1288–1297Google Scholar
  44. 44.
    Scharschmidt, B.F., Keeffe, E.B., Blankenship, N.M., Ockner, R.K., 1979. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity.J. Lab. Clin. Med. 93:790–799Google Scholar
  45. 45.
    Schulz, I. 1980. Messenger role of calcium in function of pancreatic acinar cells.Am. J. Physiol. 239:G335-G347Google Scholar
  46. 46.
    Schulz, I., Kimura, T., Wakasugi, H., Haase, W., Kribben, A. 1981. Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic acini.Philos. Trans. R. Soc. London B 296:105–113Google Scholar
  47. 47.
    Schulz, I., Wakasugi, H., Stolze, H., Kribben, A., Haase, W. 1981. Analysis of Ca2+ fluxes and their relation to enzyme secretion in dispersed pancreatic acinar cells.Fed. Proc. 40:2503–2510Google Scholar
  48. 48.
    Shields, H.M., Bair, F.A., Bates, M.L., Yedlin, S.T., Alpers, D.H. 1982. Localization of immunreactive alkaline phosphatase in the rat small intestine at the light microscopic level by immuncytochemistry.Gastroenterology 82:39–45Google Scholar
  49. 49.
    Sillen, L.G. 1971. Stability Constants of Metal-Ion Complexes. (Special publication No. 25, supplement No. 1 to special publication No. 17), 2nd ed., Chemical Society, LondonGoogle Scholar
  50. 50.
    Smallwood, J.I., Waisman, D.M., Lafreniere, D., Rasmussen, H. 1983. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange.J. Biol. Chem. 258:11092–11097Google Scholar
  51. 51.
    Sottocasa, G.L., Kuylenstierna, B., Ernster, L., Bergstrand, A. 1967. An electron-transport system associated with the outer membrane of liver mitochondria.J. Cell Biol. 32:415–436Google Scholar
  52. 52.
    Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26:31–43Google Scholar
  53. 53.
    Stolze, H., Schulz, I. 1980. Effect of atropine, ouabain, antimycin A, and A23187 on “trigger Ca2+ pool” in exocrine pancreas.Am. J. Physiol. 238:G338-G348Google Scholar
  54. 54.
    Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69Google Scholar
  55. 55.
    Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca2+ concentration as studied in leaky isolated acinar cells of rat pancreas.Am. J. Physiol. 245:G347-G357Google Scholar
  56. 56.
    Tartakoff, A.M., Jamieson, J.D. 1974. Subcellular fractionation of the pancreas.Methods Enzymol. 31:41–59Google Scholar
  57. 57.
    The, R., Hasselbach, W. 1972. The modification of the reconstituted sarcoplasmic ATPase by monovalent cations.Eur. J. Biochem. 30:318–324Google Scholar
  58. 58.
    The, R., Hasselbach, W. 1975. The action of chaotropic anions on the sarcoplasmic calcium pump.Eur. J. Biochem. 53:105–113Google Scholar
  59. 59.
    Udenfriend, S., Stein, S., Böhlen, P., Dairman, W., Lerngruber, W., Weigele, M. 1972. Fluorescamine: A reagent for assay of amino acids, peptides, proteins, primary amines in the picomole range.Science 178:871–872Google Scholar
  60. 60.
    Wakasugi, H., Kimura, T., Haase, W., Kribben, A., Kaufmann, R., Schulz, I. 1982. Calcium uptake into acini from rat pancreas: Evidence for intracellular ATP-dependent calcium sequestration.J. Membrane Biol. 65:205–220Google Scholar
  61. 61.
    Wibo, M., Morel, N., Godfraind, T. 1981. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle.Biochim. Biophys. Acta 649:651–660Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • E. Bayerdörffer
    • 1
  • L. Eckhardt
    • 1
  • W. Haase
    • 1
  • I. Schulz
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt-70Federal Republic of Germany

Personalised recommendations