Advertisement

The Journal of Membrane Biology

, Volume 82, Issue 3, pp 241–247 | Cite as

Potential-dependent phase partitioning of fluorescent hydrophobic ions in phospholipid vesicles

  • Douglas E. Raines
  • David S. Cafiso
Articles

Summary

Fluorescent, dansyl derivatives of triphenylalkylphosphonium ions have been synthesized and exhibit fluorescence intensities in small sonicated phospholipid vesicles that are dependent upon transmembrane potentials. The voltage-dependent fluorescence changes are a result of changes in quantum yield that accompany a voltage-dependent phase partitioning of the probe. This phase partitioning is easily quantitated by calibrating the intensities of totally membrane-associated and aqueous probe. The voltage-dependence is well accounted for by a simple thermodynamic model and allows an estimation of potentials from fluorescence intensities in small vesicle systems.

Key Words

membrane potential hydrophobic ions fluorescent probes lipid vesicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerman, K.E., Saris, N.-E.L. 1976. Stacking of safranine in liposomes during valinomycin induced efflux of potassium ions.Biochim. Biophys. Acta 426:624–629Google Scholar
  2. Akerman, K.E., Wikström, M. 1976. Safranine as a probe of the mitochondrial membrane potential.FEBS Lett. 68:191–197Google Scholar
  3. Andersen, O., Feldberg, S., Nahadoman, H., Levy, S., McLaughlin, S. 1978. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.Biophys. J. 21:35–70Google Scholar
  4. Andersen, O., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers.Biophys. J. 15:795–829Google Scholar
  5. Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitsky, D.O., Liberman, E.A., Severina, I.I., Skulachev, V.P. 1970. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria.Biochim. Biophys. Acta 216:13–21Google Scholar
  6. Bartlett, G.R. 1959. Phosphorous assay in column chromatography.J. Biol. Chem. 243:701–720Google Scholar
  7. Cafiso, D.S., Hubbell, W.L. 1978. Estimation of transmembrane potentials from phase equilibria of hydrophobic paramagnetic ions.Biochemistry 17:187–195Google Scholar
  8. Cafiso, D.S., Hubbell, W.L. 1981. EPR determination of membrane potentials.Annu. Rev. Biophys. Bioeng. 10:217–244Google Scholar
  9. Cafiso, D.S., Hubbell, W.L. 1982. Transmembrane electrical currents of spin-labeled hydrophobic ions.Biophys. J. 39:263–272Google Scholar
  10. Castle, J.D., Hubbell, W.L. 1976. Estimation of membrane surface potential and charge density from the phase equilibrium of a paramagnetic amphiphile.Biochemistry 15:4818–4831Google Scholar
  11. Cohen, L.B., Salzberg, B.M. 1978. Optical measurements of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83:35–88Google Scholar
  12. Denny, D.B., Smith, L.C. 1962. Preparation and reactions of some phosphobetaines.J. Org. Chem. 27:3404–3408Google Scholar
  13. Dill, K.A., Flory, P.J. 1980. Interphases of chain molecules: Monolayers and lipid bilayer membranes.Proc. Natl. Acad. Sci. USA 77:3115–3119Google Scholar
  14. Dill, K.A., Flory, P.J. 1981. Molecular organization in micelles and vesicles.Proc. Natl. Acad. Sci. USA 78:679–680Google Scholar
  15. Grinvald, A., Hildesheim, R., Farber, I., Anglister, L. 1982. Improved fluorescent probes for the measurement of rapid changes in membrane potential.Biophys. J. 39:301–308Google Scholar
  16. Gupta, R.K., Salzberg, B.M., Grinvald, A., Cohen, L.B., Kamino, K., Lesher, S., Boyle, M.B., Waggoner, A.S., Wang, C.H. 1981. Improvements in optical methods for measuring rapid changes in membrane potential.J. Membrane Biol. 58:123–138Google Scholar
  17. Huang, C. 1969. Studies on phosphatidylcholine vesicles. Formation and physical characteristics.Biochemistry 8:344–351Google Scholar
  18. Kamo, N., Muratsugu, M., Hongoh, R., Kobatake, Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state.J. Membrane Biol. 49:105–121Google Scholar
  19. Katz, Y., Diamond, J.M. 1974. Nonsolvent water in liposomes.J. Membrane Biol. 17:87–100Google Scholar
  20. Loew, L., Bonneville, G., Surow, J. 1978. Charge shift probes of membrane potential.Biochemistry 17:4065–4071Google Scholar
  21. Loew, L., Simpson, L. 1981. Charge shift probes of membrane potential.Biophys. J. 34:353–363Google Scholar
  22. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.Curr. Top. Membr. Transp. 9:71–144Google Scholar
  23. Singleton, W.S., Gray, M.S., Brown, M.L., White, J.L. 1965. Chromatographically homogeneous lecithin from egg phospholipids.J. Am. Oil Chem. Soc. 42:53–56Google Scholar
  24. Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47–63Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Douglas E. Raines
    • 1
  • David S. Cafiso
    • 1
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesville

Personalised recommendations