The Journal of Membrane Biology

, Volume 84, Issue 3, pp 259–267 | Cite as

Effect of different phospholipids on the reconstitution of two functions of the lactose carrier ofEscherichia coli

  • Donna Seto-Young
  • Chia-Chen Chen
  • T. Hastings Wilson
Articles

Summary

The lactose carrier was extracted from membranes ofEscherichia coli and transport activity reconstituted in proteoliposomes containing different phospholipids. Two different assays f for carrier activity were utilized: counterflow and membrane potential-driven uptake. Proteoliposomes composed ofE. coli lipid or of 50% phosphatidylethanolamine−50% phosphatidylcholine showed very high transport activity with both assays. On the other hand, proteoliposomes containing asolectin, phosphatilcholine or 25% cholesterol/75% phosphatidylcholine showed good counterflow activity but poor membrane potentialdriven uptake. The discrepancy between the two types of transport activity in the latter group of three lipids is not due to leakiness to protons, size of proteoliposomes, or carrier protein content per proteoliposome. Apparently one function of the carrier molecule shows a broad tolerance for various phospholipids, while a second facet of the membrane protein activity requires very restricted lipid enviroment.

Key Words

proteoliposomes counterflow lactose carrier phospholipid requirement Escherichia coli reconstitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, C.C., Wilson, T.H. 1984. The phospholipid requirement for activity of the lactose carrier ofEscherichia coli.J. Biol. Chem. 259:10150–10158Google Scholar
  2. Cohen, G.N., Monod, J. 1957. Bacterial permeases.Bacteriol. Rev. 21:169–194Google Scholar
  3. Cohen, G.N., Rickenberg, H.V. 1956. Concentration specifique reversible des amino acids chezEscherichia coli.Ann. Inst. Pasteur Paris 91:693–720Google Scholar
  4. Danielli, J.F. 1954. The present position in the field of facilitated diffusion and selective active transport.Proc. Symp. Colston Res. Soc. 7:1–4Google Scholar
  5. Dryer, R.L., Tammes, A.R., Routh, J.I. 1957. The determination of phosphorus and phosphatase with N-phenyl-p-phenylenediamine.J. Biol. Chem. 225:177–183Google Scholar
  6. Foster, D.L., Garcia, M.L., Newman, M.J., Patel, L., Kaback, H.R. 1982. Lactose-proton symport by purifiedlac carrier protein.Biochemistry 21:5634–5638Google Scholar
  7. Fox, C.F., Kennedy, E.P. 1965. Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system ofEscherichia coli.Proc. Natl. Acad. Sci. USA 54:891–899Google Scholar
  8. Fried, V.A. 1977. A novel mutant of thelac transport system ofE. coli.J. Mol. Biol. 114:477–490Google Scholar
  9. Garcia, M.L., Patel, L., Padan, E., Kaback, H.R. 1982. Mechanism of lactose transport inEscherichia coli membrane vesicles: Evidence for the involvement of histidine residue(s) in the response to thelac carrier to the proton electrochemical gradient.Biochemistry 21:5800–5805Google Scholar
  10. Garcia, M.L., Viitanen, P., Foster, D.L., Kaback, H.R. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted withlac carrier protein purified fromEscherichia coli. I. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow.Biochemistry 22:2524–2531Google Scholar
  11. Hallen, R.M. 1980. Colorimetric estimation of phospholipids in aqueous dispersions.J. Biochem. Biophys. Methods 2:251–255Google Scholar
  12. Hidalgo, C., Ikemoto, N., Gergely, J. 1976. Role of phospholipids in calcium-dependent ATPase of the sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid-replacement membranes.J. Biol. Chem. 251:4224–4232Google Scholar
  13. Kaczorowski, G.J., Kaback, H.R. 1979. Mechanism of lactose translocation in membrane vesicles fromEscherichia coli. I. Effect of pH on efflux, exchange, and counterflow.Biochemistry 18, 3691–3704Google Scholar
  14. Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing32Pi-adenosine triphosphate exchange.J. Biol. Chem. 246:5477–5487Google Scholar
  15. Kepes, A. 1960. Etudes cinétiques sur la galactoside-perméase d'Escherichia coli.Biochim. Biophys. Acta 40:70–84Google Scholar
  16. Koch, A.L. 1964. The role of permease in transport.Biochim. Biophys. Acta 79:177–200Google Scholar
  17. Mitchell, P. 1963. Molecule, group and electron translocation through natural membranes.Biochem. Soc. Symp. 22:142–168Google Scholar
  18. Navarro, J., Toivio-Kunnucan, M., Racker, E. 1984. Effect of lipid composition on the calcium/adenosine 5′-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum.Biochemistry 23:130–135Google Scholar
  19. Newman, M.J., Foster, D.L., Wilson, T.H., Kaback, H.R. 1981. Purification and reconstitution of functional lactose carrier fromEscherichia coli.J. Biol. Chem. 256:11804–11808Google Scholar
  20. Newman, M.J., Wilson, T.H. 1980. Solubilization and reconstitution of the lactose transport system fromEscherichia coli.J. Biol. Chem. 255:10583–10586Google Scholar
  21. Padan, E., Patel, L., Kaback, H.R. 1979. Effect of diethylpyrocarbonate on lactose/proton symport inEscherichia coli membrane vesicles.Proc. Natl. Acad. Sci. USA 76:6221–6225Google Scholar
  22. Park, C.R., Post, R.L., Kalman, C.F., Wright, J.H., Jr., Johnson, L.H., Morgan, H.E. 1956. The transport of glucose and other sugars across cell membranes and the effect of insulin.Ciba Found. Colloq. Endocrinol. 9:240–260Google Scholar
  23. Patel, L., Garcia, M.L., Kaback, H.R. 1982. Direct measurement of lactose/proton symport inEscherichia coli membrane vesicles: Further evidence for the involvement of histidine residue(s).Biochemistry 21:5805–5810Google Scholar
  24. Rosenberg, T., Wilbrandt, W. 1957. Uphill transport induced by counterflowJ. Gen. Physiol. 41:289–296Google Scholar
  25. Schaffner, W., Weissman, C. 1973. A rapid, sensitive, and specific method for the determination of protein in dilute solution.Anal. Biochem. 56:502–514Google Scholar
  26. Tamkun, M.M., Talvenheimo, J.A., Catterall, W.A. 1984. The sodium channel from rat brain. Reconstitution of neurotoxinactivated flux and scorpion toxin from purified components.J. Biol. Chem. 259:1676–1688Google Scholar
  27. Teather, R.M., Bramhall, J., Riede, I., Wright, J.K., Furst, M., Aichele, G., Wilhelm, U., Overath, P. 1980. Lactose carrieer protein ofEscherichia coli: Structure and expression of plasmids carrying theY gene of thelac operon.Eur. J. Biochem. 108:223–231Google Scholar
  28. Viitanen, P., Garcia, M.L., Foster, D.L., Kaczorowski, G.J., Kaback, H.R. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted withlac carrier protein purified fromEscherichia coli. II. Deuterium solvent isotope effects.Biochemistry 22:2531–2536Google Scholar
  29. Widdas, W.F. 1952. Inability of diffusion of account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer.J. Physiol. (London) 118:23–29Google Scholar
  30. Wilbrandt, W. 1972. Carrier diffusion in biomembranes.In: Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slegers, editors, Vol. 3, pp. 79–99. Plenum, New YorkGoogle Scholar
  31. Wilson, T.H., Kusch, M., Kashket, E.R. 1970. A mutant inEscherichia coli energy-uncoupled for lactose transport: A defect in the lactose-operon.Biochem. Biophys. Res. Commun. 40:1409–1414Google Scholar
  32. Winkler, H.H., Wilson, T.H. 1966. The role of energy coupling in the transport of β-galactosides byEscherichia coli.J. Biol. Chem. 241:2200–2211Google Scholar
  33. Wong, P.T.S., Kashket, E.R., Wilson, T.H. 1970. Energy coupling in the lactose transport system ofEscherichia coli.Proc. Natl. Acad. Sci. USA 65:63–69Google Scholar
  34. Wong, P.T.S., Wilson, T.H. 1970. Counterflow of galactosides inEscherichia coli.Biochim. Biophys. Acta 196:336–350Google Scholar
  35. Wright, J.K., Overath, P. 1984. Purification of the lactose: H+ carrier ofEscherichia coli and characterization of galactoside binding and transport.Eur J. Biochem. 138:497–508Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Donna Seto-Young
    • 1
  • Chia-Chen Chen
    • 1
  • T. Hastings Wilson
    • 1
  1. 1.Department of PhysiologyHarvard Medical SchoolBoston

Personalised recommendations