The Journal of Membrane Biology

, Volume 124, Issue 1, pp 1–12 | Cite as

Basolateral membrane potassium conductance of A6 cells

  • Marie-Christine Broillet
  • Jean-Daniel Horisberger
Articles

Summary

To study the properties of the basolateral membrane conductance of an amphibian epithelial cell line, we have adapted the technique of apical membrane selective permeabilization (Wills, N.K., Lewis, S.A., Eaton, D.C., 1979b, J. Membrane Biol.45:81–108). Monolayers of A6 cells cultured on permeable supports were exposed to amphotericin B. The apical membrane was effectively permeabilized, while the high electrical resistance of the tight junctions and the ionic selectivity of the basolateral membrane were preserved. Thus the transepithelial current-voltage relation reflected mostly the properties of the basolateral membrane. Under “basal” conditions, the basolateral membrane conductance was inward rectifying, highly sensitive to barium but not to quinidine. After the induction of cell swelling either by adding chloride to the apical solution or by lowering the osmolarity of the basolateral solution, a large out-ward-rectifying K+ conductance was observed, and addition of barium or quinidine to the basolateral side inhibited, respectively, 82.4±1.9% and 90.9±1.0% of the transepithelial current at 0 mV. Barium block was voltage dependent; the half-inhibition constant (Ki) varied from 1499±97 μm at 0 mV to 5.7±0.5 μm at −120 mV.

Cell swelling induces a large quinidine-sensitive K+ conductance, changing the inward-rectifying basolateral membrane conductance observed under “basal” conditions into a conductance with outward-rectifying properties.

Key Words

A6 cells amphotericin B basolateral membrane K+ conductance cell volume barium quinidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C.M., Swenson, J.R., Taylor, S.R. 1982. Block of squid axon K channels by internally and externally applied barium ions.J. Gen. Physiol. 80:663–682Google Scholar
  2. Butt, A.G., Clapp, W.L., Frizzell, R.A. 1990. Potassium conductances in tracheal epithelium activated by secretion and cell swelling.Am. J. Physiol. 258:C630-C638Google Scholar
  3. Chang, D., Dawson, D.C. 1988. Digitonin-permeabilized colonic cell layers.J. Gen. Physiol. 92:281–306Google Scholar
  4. Costantin, J., Alcalen, S., De Souza Otero, A., Dubinsky, W.P., Schultz, S.G. 1989. Reconstitution of an inward rectifying potassium channel from the basolateral membranes ofNecturus enterocytes into planar lipid bilayers.Proc. Natl. Acad. Sci. USA 86:5212–5216Google Scholar
  5. Dawson, D.C. 1987. Properties of epithelial potassium channels.Curr. Topics Membr. Trans. 28:41–71Google Scholar
  6. Dawson, D.C., Richards, N.W. 1990. Basolateral K conductance: Role in regulation of NaCl absorption and secretion.Am. J. Physiol. 259:C181-C195Google Scholar
  7. De Kruijff, B., Gerritsen, W.S., Oerlemans, A., Demel, R.A., Van Deenen, L.L.M. 1974. Polyene antibiotic-sterol interactions in membranes ofAcholeplasma laidlawii cells and lecithin liposomes.Biochim. Biophys. Acta 339:30–43Google Scholar
  8. De Wolf, I., Van Driessche, W. 1986. Voltage-dependent block of K+ channels in the apical membrane of frog skin.Am. J. Physiol. 251:C696-C706Google Scholar
  9. Eaton, D.C., Brodwick, M.S. 1980. Effects of barium on the potassium conductance of squid axon.J. Gen. Physiol. 75:727–750Google Scholar
  10. Eveloff, J.L., Warnock, D.G. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252:F1-F10Google Scholar
  11. Garty, H. 1984. Current-voltage relations of the basolateral membrane in tight amphibian epithelia: Use of nystatin to depolarize the apical membrane.J. Membrane Biol. 77:213–222Google Scholar
  12. Germann, W.J., Ernst, S.A., Dawson, D.C. 1986a. Resting and osmotically induced basolateral K conductances in turtle colon.J. Gen. Physiol. 88:253–274Google Scholar
  13. Germann, W.J., Lowy, M.E., Ernst, S.A., Dawson, D.C. 1986b. Differentiation of two distinct K conductances in the basolateral membrane of turtle colon.J. Gen. Physiol. 88:237–251Google Scholar
  14. Granitzer, M., Leal, T., Nagel, W., Crabbe, J. 1991. Apical and basolateral conductance in cultured A6 cells.Pfluegers Arch. 417:463–468Google Scholar
  15. Guggino, S.E., Guggino, W.B., Green, N., Sacktor, B. 1987. Blocking agents of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells.Am. J. Physiol. 252:C128-C137Google Scholar
  16. Hamilton, K.L., Eaton, D.C. 1986. Regulation of single sodium channels in renal tissue: A role in sodium homeostasis.Fed. Proc. 45:2713–2717Google Scholar
  17. Handler, J.S., Steele, R.E., Sahib, M.K., Wade, J.B., Preston, A.S., Lawson, N.L., Johnson, J.P. 1979. Toad urinary bladder epithelial cells in culture: Maintenance of epithelial structure, sodium transport, and response to hormones.Proc. Natl. Acad. Sci. USA 76:4151–4155Google Scholar
  18. Hanrahan, J.W., Wills, N.K., Phillips, J.E., Lewis, S.A. 1986. Basolateral K channels in an insect epithelium: Channel density, conductance, and block by barium.J. Gen. Physiol. 87:443–466Google Scholar
  19. Horisberger, J.-D., Giebisch, G. 1988. Voltage dependence of the basolateral membrane conductance in theAmphiuma collecting tubule.J. Membrane Biol. 105:257–263Google Scholar
  20. Kawahara, K., Hunter, M., Giebisch, G. 1987. Potassium channels in theNecturus proximal tubule.Am. J. Physiol. 253:F488-F494Google Scholar
  21. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308Google Scholar
  22. Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F953-F962Google Scholar
  23. Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30Google Scholar
  24. Lewis, S.A., Butt, A.G., Bowler, M.J., Leader, J.P., Mac-Knight, A.D.C. 1985a. Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder.J. Membrane Biol. 83:119–137Google Scholar
  25. Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440Google Scholar
  26. Lewis, S.A., Hanrahan, J.W. 1985b. Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium.Pfluegers Arch. 405(Suppl 1):S83-S88Google Scholar
  27. Lewis, S.A., Wills, N.K. 1982. Electrical properties of the rabbit urinary bladder assessed using gramicidin D.J. Membrane Biol. 67:45–53Google Scholar
  28. Loo, D.D.F., Kaunitz, J.D. 1989. Ca2+ and cAMP activate K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon.J. Membrane Biol. 110:19–28Google Scholar
  29. Merot, J., Bidet, M., Le Maout, S., Tauc, M., Poujeol, P. 1989. Two types of K+ channels in the apical membrane of rabbit proximal tubule in the primary culture.Biochim. Biophys. Acta 978:134–144Google Scholar
  30. Nagel, W. 1985. Basolateral membrane ionic conductance in frog skin.Pfluegers Arch. 405:S39-S43Google Scholar
  31. Nelder, J.A., Mead, R. 1965. A simplex method for function minimization.Comput. J. 7:308–313Google Scholar
  32. Neyton, J., Miller, C. 1988. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel.J. Gen. Physiol. 92:569–586Google Scholar
  33. Paccolat, M.P., Geering, J., Gaeggeler, H.-P., Rossier, B.C. 1987. Aldosterone regulation of Na+ transport and Na+−K+-ATPase in A6 cells: Role of growth conditions.Am. J. Physiol. 252:C468-C476Google Scholar
  34. Preston, A.S., Muller, J., Handler, J.S. 1988. Dexamethasone accelerates differentiation of A6 epithelia and increases response to vasopressin.Am. J. Physiol. 255:661–666Google Scholar
  35. Reuss, L., Gatzy, J.T., Finn, A.L. 1978. Dual effects of amphotericin B on ion permeation in toad urinary bladder epithelium.Am. J. Physiol. 235:F507-F514Google Scholar
  36. Reuss, L., Lewis, S.A., Wills, N.K., Helman, S.I., Cox, T.C., Boron, W.F., Siebens, A.W., Guggino, W.B., Giebisch, G., Schultz, S.G. 1984. Ion transport processes in basolateral membranes of epithelia.Fed. Proc. 43:2488–2502Google Scholar
  37. Richards, N.W., Dawson, D.C. 1986. Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells.Am. J. Physiol. 251:C85-C89Google Scholar
  38. Sackin, H., Palmer, L.G. 1987. Basolateral potassium channels in renal proximal tubule.Am. J. Physiol. 253:F476-F487Google Scholar
  39. Schoen, H.F., Erlij, D. 1985. Current-voltage relations of the apical and basolateral membranes of the frog skin.J. Gen. Physiol. 86:257–287Google Scholar
  40. Schultz, S.G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, CambridgeGoogle Scholar
  41. Schultz, S.G., Thompson, S.M., Hudson, R., Thomas, S.R., Suzuki, Y. 1984. Electrophysiology ofNecturus urinary bladder: II. Time-dependent current-voltage relations of the basolateral membranes.J. Membrane Biol. 79:257–269Google Scholar
  42. Standen, N.B., Stanfield, P.R. 1978. A potential and time dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.J. Physiol. 280:169–191Google Scholar
  43. Taniguchi, J., Yoshitomi, K., Imai, M. 1989. K+ channel currents in basolateral membrane of distal convoluted tubule of rabbit kidney.Am. J. Physiol. 256:F246-F254Google Scholar
  44. Thomas, S.R., Mintz, E. 1987. Time-dependent apical membrane K+ and Na+ selectivity in cultured kidney cells.Am. J. Physiol. 253:C1-C6Google Scholar
  45. Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. Electrophysiology ofNecturus urinary bladder: 1. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175Google Scholar
  46. Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways.J. Membrane Biol. 66:55–61Google Scholar
  47. Turnheim, K., Costantin, J., Chan, S., Schultz, S.G. 1989. Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into planar lipid bilayers.J. Membrane Biol. 112:247–254Google Scholar
  48. Van Driessche, W., Hillyard, S.D. 1985. Quinidine blockage of K+ channels in the basolateral membrane of larval bullfrog skin.Pfluegers Arch. 405(Suppl. 1):S77-S82Google Scholar
  49. Van Driessche, W., Zeiske, W. 1980. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria).J. Membrane Biol. 56:31–42Google Scholar
  50. Verrey, F., Schaerer, E., Zoerkler, P., Paccolat, M.P., Geering, K., Kraehenbuhl, J.P., Rossier, B.C. 1987. Regulation by aldosterone of Na+,K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells.J. Cell Biol. 104:1231–1237Google Scholar
  51. Wills, N.K., Eaton, D.C., Lewis, S.A., Ifshin, M.S. 1979a. Current-voltage relationship of the basolateral membrane of a tight epithelium.Biochim. Biophys. Acta 555:519–523Google Scholar
  52. Wills, N.K., Lewis, S.A., Eaton, D.C. 1979b. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:81–108Google Scholar
  53. Zeiske, W., Van Driessche, W., Ziegler, R. 1986. Current-noise analysis of the basolateral route for K+ ions across a K+-secreting insect midgut epithelium (Manduca sexta).Pfluegers Arch. 407:657–663Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Marie-Christine Broillet
    • 1
  • Jean-Daniel Horisberger
    • 1
  1. 1.Institut de PharmacologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations