Skip to main content
Log in

Modulation of ATPase activities of human erythrocyte membranes by free fatty acids or phospholipase A2

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The artificial insertion of increasing amounts of unsaturated fatty acids into human erythrocyte membranes modulated ATPase activities in a biphasic manner, depending on the number and position of double bonds, their configuration, and the chain length. Uncharged long-chain fatty acid derivatives with double bonds and short-chain fatty acids were ineffective. Stearic acid stimulated Na+K+-ATPase only. Anionic and non-ionic detergents and α-lysophosphatidylcholine failed to stimulate ATPase activities at low, and inhibited them at high concentrations.

Mg2+-ATPase activity was maximally enhanced by a factor of 2 in the presence of monoenoic fatty acids; half-maximal stimulation was achieved at a molar ratio ofcis(trans)-configurated C18 acids/membrane phopholipid of 0.16 (0.26).

Na+K+-ATPase activity was maximally augmented by 20% in the presence of monoenoic C18 fatty acids at 37°C. Half-maximal effects were attained at a molar ratio oleic (elaidic) acid/phospholipid of 0.032 (0.075). Concentrations of free fatty acids which inhibited ATPase activities at 37°C were most stimulatory at reduced temperatures. AT 10°C, oleic acid increased Na+K+-ATPase activity fivefold (molar ratio 0.22).

Unsaturated fatty acids simulated the effect of calmodulin on Ca2+-ATPase of native erythrocyte membranes (i.e., increase ofV max from 1.6 to 5 μmol PO 3−4 ·phospholipid−1·hr−1, decrease of K Ca from 6 μm to 1.4–1.8 μm). Stearic acid decreasedK Ca (2 μm) only, probably due to an increase of negative surface charges.

A stimulation of Mg2+-ATPase, Na+K+-ATPase, and Ca2+-ATPase could be achieved by incubation of the membranes with phospholipase A2.

An electrostatic segregation of free fatty acids by ATPases with ensuing alterations of surface charge densities and disordering of the hydrophobic environment of the enzymes provides an explanation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahrens, M.-L. 1981. Electrostatic control by lipids upon the membrane-bound (Na++K+)-ATPase.Biochim. Biophys. Acta 642:252–266

    PubMed  Google Scholar 

  2. Anderson, W.B., Jaworski, C.J. 1977. Modulation of adenylate cyclase activity of fibroblasts by free fatty acids or phospholipids.Arch. Biochem. Biophys. 180:374–383

    PubMed  Google Scholar 

  3. Birrell, G.B., Sistrom, W.R., Griffith, O.H. 1978. Lipid-protein associations in chromatophores from the photosynthetic bacteriumRhodopseudomonas sphaeroides.Biochemistry 17:3768–3773

    PubMed  Google Scholar 

  4. Bond, G.H., Clough, D.L. 1973. A soluble protein activator of (Mg2++Ca2+)-dependent ATPase in human red cell membranes.Biochim. Biophys. Acta 323:592–599

    PubMed  Google Scholar 

  5. Bramely, T.A., Coleman, R., Finean, J.B. 1971. Chemical, enzymological andpermeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities.Biochim. Biophys. Acta 241:752–769

    PubMed  Google Scholar 

  6. Brotherus, J.R., Jost, P.C., Griffith, O.H., Keana, J.F.W., Hokin, L.E. 1980. Charge selectivity at the lipid-protein interface of membranous Na,K-ATPase.Proc. Natl. Acad. Sci. USA 77:272–276

    PubMed  Google Scholar 

  7. De Pont, J.H.H.M., Van Prooijen-Van Eeden, A., Bonting, S.L. 1978. Role of negatively charged phospholipids in highly purified (Na++K+)-ATPase from rabbit kidney outer medulla. Studies on (Na++K+)-activated ATPase, XXXIX.Biochim. Biophys. Acta 508:464–477

    PubMed  Google Scholar 

  8. Dodge, J.T., Mitchell, C., Hanahan, D.J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119–130

    PubMed  Google Scholar 

  9. Fain, J.N., Shepherd, R.E. 1975. Free fatty acids as feedback regulators of adenylate cyclase and cyclic 3′∶5′-AMP accumulation in rat fat cells.J. Biol. Chem. 250:6586–6592

    PubMed  Google Scholar 

  10. Farrance, M.L., Vincenzi, F.F. 1977. Enhancement of (Ca2++Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer: I. General properties of variously prepared membranes and the mechanism of the isosmotic imidazole effect.Biochim. Biophys. Acta 471:49–58

    PubMed  Google Scholar 

  11. Farrance, M.L., Vincenzi, F.F. 1977. Enhancement of (Ca2++Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer: II. Dependence on calcium and a cytoplasmic activator.Biochim. Biophys. Acta 471:59–66

    PubMed  Google Scholar 

  12. Fiehn, W., Hasselbach, W. 1970. The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles.Eur. J. Biochem. 13:510–518

    PubMed  Google Scholar 

  13. Hanski, E., Rimon, G., Levitzki, A. 1979. Adenylate cyclase activation by the β-adrenergic receptors as a diffusion-controlled process.Biochemistry 18:846–853

    PubMed  Google Scholar 

  14. Hidaka, H., Yamaki, T., Yamabe, H. 1978. The forms of Ca2+-dependent cyclic 3′∶5′-nucleotide phosphodiesterase from human aorta and effect of free fatty acids.Arch. Biochem. Biophys. 187:315–321

    PubMed  Google Scholar 

  15. Hokin, L.E., Hexum, T.D. 1972. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase: IX. On the role of phospholipids in the enzyme.Arch. Biochem. Biophys. 151:453–463

    PubMed  Google Scholar 

  16. Irvine, R.F., Letcher, A.J., Dawson, R.M.C. 1979. Fatty acid stimulation of membrane phosphatidylinositol hydrolysis by brain phosphatidylinositol phosphodiesterase.Biochem. J. 178:497–500

    PubMed  Google Scholar 

  17. Jain, M.K., Echteld, C.J.A. van, Ramirez, F., Gier, J. de, Haas, G.H. de, Deenen, L.L.M. van. 1980. Association of lysophosphatidylcholine with fatty acids in aqueous phase to form bilayers.Nature (London) 284:486–487

    Google Scholar 

  18. Kannagi, R., Koizumi, K., Masuda, T. 1981. Limited hydrolysis of platelet membrane phospholipids.J. Biol. Chem. 256:1177–1184

    PubMed  Google Scholar 

  19. Kimelberg, H.K. 1977. The influence of membrane fluidity on the activity of membrane-bound enzymes.In: Cell Surface Reviews. Vol. 3. Dynamic Aspects of Cell Surface Organization. G. Poste and G.L. Nicolson, editors. pp. 205–293. Elsevier/North-Holland Biomedical, Amsterdam

    Google Scholar 

  20. Klee, C.B., Crouch, T.H., Richman, P.G. 1980. Calmodulin.Annu. Rev. Biochem. 49:489–515

    PubMed  Google Scholar 

  21. McDonald, J.M., Bruns, D.E., Jarett, L., Davis, J.E. 1977. A rapid microtechnique for the preparation of biological material for the simultaneous analysis of calcium, magnesium and protein.Anal. Biochem. 82:485–492

    PubMed  Google Scholar 

  22. Niggli, V., Adunyah, E.S., Carafoli, E. 1981. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase.J. Biol. Chem. 256:8588–8592

    PubMed  Google Scholar 

  23. Orly, J., Schramm, M. 1975. Fatty acids as modulators of membrane functions: Catecholamine-activated adenylate cyclase of the turkey erythrocyte.Proc. Natl. Acad. Sci. USA 72:3433–3437

    PubMed  Google Scholar 

  24. Penny, C.L. 1976. A simple micro-assay for inorganic phosphate.Anal. Biochem. 75:201–210

    PubMed  Google Scholar 

  25. Roelofsen, B., Sibenius Trip, M., Verheij, H.M., Zevenbergen, J.L. 1980. The action of cobra venom phospholipase A2 isoenzymes towards intact human erythrocytes.Biochim. Biophys. Acta 600:1012–1017

    PubMed  Google Scholar 

  26. Scharff, O. 1979. Comparison between measured and calculated concentrations of calcium ions in buffers.Analyt. Chim. Acta 109:291–305

    Google Scholar 

  27. Schmalzing, G., Pfaff, E., Breyer-Pfaff, U. 1981. Red cell ouabain binding sites, Na+K+-ATPase, and intracellular Na+ as individual characteristics.Life Sci. 29:371–381

    PubMed  Google Scholar 

  28. Sedmak, J.J., Grossberg, S.E. 1977. A rapid, sensitive, and versatile assay for protein using Coomassie brillant blue G250.Anal. Biochem. 79:544–552

    PubMed  Google Scholar 

  29. Sinensky, M., Minneman, K.P., Molinoff, P.B. 1979. Increased membrane acyl chain ordering activates adenylate cyclase.J. Biol. Chem. 254:9135–9141

    PubMed  Google Scholar 

  30. Swoboda, G., Fritzsche, J., Hasselbach, W. 1979. Effects of phospholipase A2 and albumin on the calcium-dependent ATPase and the lipid composition of sarcoplasmic membranes.Eur. J. Biochem. 95:77–88

    PubMed  Google Scholar 

  31. Tanaka, T., Hidaka, H. 1980. Hydrophobic regions function in calmodulin-enzyme(s) interactions.J. Biol. Chem. 255:11078–11080

    PubMed  Google Scholar 

  32. Taverna, R.D., Hanahan, D.J. 1980. Modulation of human erythrocyte Ca2+/Mg2+-ATPase activity by phospholipase A2 and proteases: A comparison with calmodulin.Biochem. Biophys. Res. Commun. 94:652–659

    PubMed  Google Scholar 

  33. The, R., Hasselbach, W. 1973. Unsaturated fatty acids as reactivators of the calcium-dependent ATPase of delipidated sarcoplasmic membranes.Eur. J. Biochem. 39:63–68

    PubMed  Google Scholar 

  34. Van den Bosch, H. 1980. Intracellular phospholipases A.Biochim. Biophys. Acta 604:191–246

    PubMed  Google Scholar 

  35. Wallach, D., Pastan, I. 1976. Stimulation of guanylate cyclase of fibroblasts by free fatty acids.J. Biol. Chem. 251:5802–5809

    PubMed  Google Scholar 

  36. Wojtczak, L., Nalecz, M. 1979. Surface charge of biological membranes as a possible regulator of membrane-bound enzymes.Eur. J. Biochem. 94:99–107

    PubMed  Google Scholar 

  37. Wolff, D.J., Brostrom, C.O. 1976. Calcium-dependent cyclic nucleotide phosphodiesterase from brain: Identification of phospholipids as calcium-independent activators.Arch. Biochem. Biophys. 173:720–731

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmalzing, G., Kutschera, P. Modulation of ATPase activities of human erythrocyte membranes by free fatty acids or phospholipase A2 . J. Membrain Biol. 69, 65–76 (1982). https://doi.org/10.1007/BF01871243

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871243

Key words

Navigation